v02.1210 GaAs MMIC SMT DOUBLE-BALANCED MIXER, 1.5 - 4.5 GHz ## **Typical Applications** The HMC213AMS8(E) is ideal for: - Base Stations - PCMCIA Transceivers - Wireless Local Loop #### **Features** Ultra Small Package: MSOP8 Conversion Loss: 8.5 dB LO / RF Isolation: 40 dB ## **Functional Diagram** ## **General Description** The HMC213AMS8(E) is a ultra miniature double-balanced mixer in 8 lead plastic surface mount package (MSOP). This passive MMIC mixer is constructed of GaAs Schottky diodes and novel planar transformer baluns on the chip. The device can be used as an upconverter, downconverter, biphase (de)modulator, or phase comparator. The consistent MMIC performance will improve system operation and assure regulatory compliance. # Electrical Specifications, $T_A = +25^{\circ}$ C, As a Function of LO Drive | Parameter | LO = +13 dBm
IF = 100 MHz | | LO = +10 dBm
IF = 100 MHz | | | Units | | |-------------------------------|------------------------------|-----------|------------------------------|------|-----------|-------|-----| | | Min. | Тур. | Max. | Min. | Тур. | Max. | | | Frequency Range, RF & LO | | 1.5 - 4.5 | | | 1.7 - 3.6 | | GHz | | Frequency Range, IF | | DC - 1.5 | | | DC - 1.5 | | GHz | | Conversion Loss | | 8.5 | 10 | | 9 | 10.5 | dB | | Noise Figure (SSB) | | 8.5 | 10 | | 9 | 10.5 | dB | | LO to RF Isolation | 29 | 40 | | 32 | 40 | | dB | | LO to IF Isolation | 27 | 35 | | 26 | 35 | | dB | | IP3 (Input) | 16 | 19 | | 14 | 18 | | dBm | | 1 dB Gain Compression (Input) | 7 | 10 | | 5 | 8 | | dBm | # **HMC213A* PRODUCT PAGE QUICK LINKS** Last Content Update: 02/23/2017 # COMPARABLE PARTS 🖳 View a parametric search of comparable parts. ## **EVALUATION KITS** • HMC213AMS8 Evaluation Board # **DOCUMENTATION** #### **Data Sheet** • HMC213A Data Sheet # **TOOLS AND SIMULATIONS** HMC213A S-Parameters # REFERENCE MATERIALS 🖵 #### **Quality Documentation** - Package/Assembly Qualification Test Report: MS8G (QTR: 2014-00393) - PCN: MS, QS, SOT, SOIC packages Sn/Pb plating vendor change - Semiconductor Qualification Test Report: MESFET-F (QTR: 2013-00247) # DESIGN RESOURCES 🖵 - HMC213A Material Declaration - PCN-PDN Information - · Quality And Reliability - Symbols and Footprints ## **DISCUSSIONS** View all HMC213A EngineerZone Discussions. # SAMPLE AND BUY Visit the product page to see pricing options. # **TECHNICAL SUPPORT** Submit a technical question or find your regional support number. ## DOCUMENT FEEDBACK 🖳 Submit feedback for this data sheet. This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified. **BALANCED MIXER, 1.5 - 4.5 GHz** GaAs MMIC SMT DOUBLE- v02.1210 ### Conversion Gain vs. Temperature @ LO = +13 dBm #### Isolation @ LO = +13 dBm #### Conversion Gain vs. LO Drive Return Loss @ LO = +13 dBm #### IF Bandwidth @ LO = +13 dBm P1dB vs. Temperature @ LO = +13 dBm v02.1210 # GaAs MMIC SMT DOUBLE-BALANCED MIXER, 1.5 - 4.5 GHz #### Input IP3 vs. LO Drive # Input IP3 vs. Temperature @ LO = +13 dBm ## Input IP2 vs. LO Drive # Input IP2 vs. Temperature @ LO = +13 dBm v02.1210 # GaAs MMIC SMT DOUBLE-BALANCED MIXER, 1.5 - 4.5 GHz ## **MxN Spurious Outputs** | | nLO | | | | | |-----|------|------|------|------|------| | mRF | 0 | 1 | 2 | 3 | 4 | | 0 | xx | 12.7 | 20.8 | 19.8 | 76.2 | | 1 | 13.4 | 0 | 39.8 | 38.9 | 56.2 | | 2 | 73.8 | 78.2 | 66.5 | 82.2 | 68.8 | | 3 | 93.8 | 89.2 | 92.2 | 82.4 | 89.0 | | 4 | >105 | >105 | >105 | >105 | >105 | RF = 3.5 GHz @ -10 dBm LO = 3.6 GHz @ +13 dBm All values in dBc below IF power level (-1RF + 1LO) ## Harmonics of LO @ RF Port | LO Freq. | nLO Spur | | | | | |----------|----------|----|----|----|--| | (GHz) | 1 | 2 | 3 | 4 | | | 1.5 | 40 | 30 | 62 | 57 | | | 2.0 | 38 | 25 | 55 | 58 | | | 2.5 | 41 | 28 | 34 | 61 | | | 3.0 | 41 | 35 | 36 | 61 | | | 3.5 | 38 | 45 | 52 | 62 | | | 4.0 | 35 | 47 | 55 | 62 | | | 4.5 | 33 | 50 | 65 | 73 | | | 5.0 | 32 | 52 | 68 | 82 | | | | | | | | | LO = +13 dBm Values in dBc below input LO level measured at RF Port. ## **Absolute Maximum Ratings** | RF / IF Input | +13 dBm | |---|----------------| | LO Drive | +27 dBm | | | +27 UDIII | | Continuous Pdiss (T = 85 °C)
(derate 10.6 mW/°C above 85 °C) | 0.69 W | | Thermal Resistance
(Channel to package lead) | 93.7 °C/W | | Junction Temperature | 150 °C | | Storage Temperature | -65 to +150 °C | | Operating Temperature | -40 to +85 °C | v02.1210 GaAs MMIC SMT DOUBLE-BALANCED MIXER, 1.5 - 4.5 GHz # **Outline Drawing** #### NOTES: - 1. LEADFRAME MATERIAL: COPPER ALLOY - 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]. - DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE. - \triangle DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE. - 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND. # **Package Information** | Part Number | Package Body Material | Lead Finish | MSL Rating | Package Marking [3] | |-------------|--|---------------|------------|---------------------| | HMC213AMS8 | Low Stress Injection Molded Plastic | Sn/Pb Solder | MSL1 [1] | 213A
XXXX | | HMC213AMS8E | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL1 [2] | 213A
XXXX | - [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$ - [2] Max peak reflow temperature of 260 °C - [3] 4-Digit lot number XXXX v02.1210 GaAs MMIC SMT DOUBLE-BALANCED MIXER, 1.5 - 4.5 GHz #### **Evaluation PCB** #### List of Materials for Evaluation PCB 103350 [1] | Item | Description | |---------|----------------------------| | J1 - J3 | PCB Mount SMA RF Connector | | U1 | HMC213AMS8(E) Mixer | | PCB [2] | 101650 Evaluation Board | ^[1] Reference this number when ordering complete evaluation PCB The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request. ^[2] Circuit Board Material: Rogers 4350