
 



 

 
 1 Line Following Robot with PID Terasic Inc. 

  

 

 

 

 

 

 

 

 

 

Abstraction 

 

This document describes how to use the PIDcontroller to implement the 

LineFollowingfunction on the Terasic A-Cute Car. Besides the line following 

function, this demonstration also support IR remote control. 

PID is abbreviation of proportional-integral-derivative.  PID Controller uses a 

control loop feedback mechanism commonly used in industrial control 

systems. 



 

 
 2 Line Following Robot with PID Terasic Inc. 

 

 

Content 

 

Abstraction 1 

Content 2 

Reference Design Overview 3 

LTC2308 SPI Controller5 

PWM Controller 6 

IR Receiver Controller 7 

PID Controller 8 

Demo Setup 9 

Rebuild Project 11 

Improvement 11 

 

  



 

 
 3 Line Following Robot with PID Terasic Inc. 

Reference Design Overview 

 

 

Figure 1 shows the Terasic A-Cute Car. The car is composed by three cards. 

DE0-Nano main card, SCD(Smart Car Daughter card) daughter card, and sensor 

daughter card. The SDC daughter card includes the lamp, buzzer, motor driver 

DRV8833, IR receiver, ADC chip LT2308, and TMD (Terasic Mini Digital) 

expansion header. The sensor daughter card includes seven Photo Interrupters 

used to track dark line(s) on a white background. 

Figure 1 A-Cute Car 

The hardware block diagram is shown in Figure 2. The PID controller is 

implemented in C++ code running on the Altera NIOS II Processor. The 

program is stored on the FPGA on-chip memory. The LTC2308 IP is used to  

read eight digitized value from the LTC2308 ADC chip through high speed SPI 

bus. The eight digitized values include one digitized value for the input power 

voltage and seven sensor values from the sensor board which containsseven 

Photo Interrupters used to track dark line(s) on a white background. The PWM 

IP is used to control the rotation speed and direction of DC motor. Each motor 

is controlled by a PWM controller. The 1K waveform IP is used to generate 1M 

frequency to drive the buzzer and the associated GPIO is used to control the 

beep sounds on or off switch.Left and right lamps are directly controlled by 

GPIO IP.The IR recevier is used to decode the recevied IR signal which is 

tramsmiited from the Terasicremoted controller. 



 

 
 4 Line Following Robot with PID Terasic Inc. 

Figure 2 Hardware Block Diagram 

 

 

Figure 2. Shows the software block diagram of the Line Following with PDI 

demonstration. The top block is C++ Structure Diagram whick interfaces with 

the QSYS IP by Altera Avalon Memory-Mapped (AVMM). In this demonstration, 

IORD and IOWR are used to communicate with the QSYS IP.  

 

Main.cpp includes the line following PID control and simple PIO control for LED, 

KEY, Lamp and Buzzer. CIrTx object is used to handle the IR input. The CIrTx 

class is derived the CQueue class. All of received IR codes are pushed in to the 

queue;whose size is 8 in this demonstration. The main program get the IR 

codes by pop data from the queue. CSensor object is used to read the digitized 

ADC values from the ADC chip LTC2308. Main program reads seven sensor 

values and one input power value from this object. The CCar object is used to 

control the movement of theA-Cute Car. This object includes two CDcMotor 

objects which are used to control the two DC motor on theA-Cute Car. The 



 

 
 5 Line Following Robot with PID Terasic Inc. 

CDcMotor objects control PWM IP to control the DC motor speed and rotation 

direction.  

Figure 3 Software Block Diagram of Line Following with PDI 

 

LTC2308SPI Controller 

 

LTC2308 is a low noise, 500Ksps, 8-channel, 12-bit ADC chip. InTerasicA-Cute 

Car,the first seven channels are used to monitor the seven response values 

from the sensor board, and the last channel is used to monitor the input 

power voltage.  The ADC is configured as single-ended, so the output value 

0~4095 is represents voltage 0~4.095V, i.e., 1LSB represents 1mV. 

The sensor value is low when sensor sees a white background, and value is 

high when sensor sees a black line. For last channel of the ADC chip can 

monitor larger range of input voltage, voltage division is applied such that only 

1/4 voltage of the input power is connected to the ADC chip. The digitized 

value must be times 4.0 to get actually input voltage with unit mV. 

In this demonstration, SPI bus is used between FPGA and LTC2308.  LTC2308 

SPI clock can be 40Mhz at maximal, however 20Mhz is used in this 

demonstration due to considering the GPIO cable reliability. The LTC2308 



 

 
 6 Line Following Robot with PID Terasic Inc. 

IPsource code located in the“ip\TERASIC_LTC2308” folder.  The IP is 

enraptured as a QSYS Compliant IP. The register file of the IPis defined bellow.  

 

Register 
Index 

Register 
Name 

Description Read/Write 

0 CS Write: 
Bit 0 presents start bit, triggered by 
rising edge. Writing 0 then 1 to bit 0 
start adc conversion.  
 
Read: 
Bit 0 presents read flag. Value 1 
meansadc conversion is done and 
channel 0~7 data are ready on register 
1~8. 

RW 

1 CH0 12 bit digitized value for channel 0 R 
2 CH1 12 bit digitized value for channel 1 R 
3 CH2 12 bit digitized value for channel 2 R 
4 CH3 12 bit digitized value for channel 3 R 
5 CH4 12 bit digitized value for channel 4 R 
6 CH5 12 bit digitized value for channel 5 R 
7 CH6 12 bit digitized value for channel 6 R 
8 CH7 12 bit digitized value for channel 7 R 

 

The CSensorC++ class defined in Sensor.cpp/h is designed to communicate 

with the LT2308 SPI hardware controller. The member functions 

ReadLineSenor and ReadInputPower can report the sensor response value 

and input power voltage individually. 

 

PWM Controller 

 

The PWM controller generate required duty cycle to control motor rotation 

speed. The IP source code is located in the folder 

“ip\TERASIC_DC_MOTOR_PWM”. The IP is enraptured as a QSYS Compliant IP. 

The register file of the IP is defined as bellows. 

Register 
Index 

Register 
Name 

Description Read/Write 

0 TOTAL_DUR 32-bits integer. 
Represent the tick number of one PWM 
cycle. 

RW 

1 HIGH_DUR 32-bits integer. 
Represent the tick number of high level in 
one PWM cycle 

RW 

2 CS Control Register RW 



 

 
 7 Line Following Robot with PID Terasic Inc. 

Bit0: Start bit.  
1 : Start 
0: Stop 
Bit1: direction bit.  
1: forward,  
0:backward 

The CDCMotorC++ class defined in Motor.cpp/h is designed to communicate 

with the PWM hardware controller. The member function SetSpeed with an 

input parameter fSpeed is designed to control motor speed and 

direction.fSpeed  value range is -100.0~100.0. Positive value presents forward 

rotary, and negative value presents backward rotary. 100 represent maximal 

speed for forward rotary, and -100 represents maximal speed for backward 

rotary. The SetSpeed function translate the input parameter fSpeed to 

required PMW parameters for the PWM controller.  The translate formula also 

depends on the input voltage level which is used to drive the DC motor. The 

member function SetInputPower is designed for users to input the current 

input power voltage level. After setting motor speed, calling member function 

Start can start motor rotation. To stop motor rotation, developer can use the 

member function Stop. 

The CCar C++ class defined in Car.cpp/h is designed to control theA-Cute Car 

movement by controlling the two DC motors on theA-Cute Car. The member 

function SetSpeed is designed to setup car movement speed and direction. 

The member function Start is designed to start car moving, and the member 

function Stop is designed to stop car moving. 

 

IR Receiver Controller 

 

The IR Receiver IP receiving the input IR signal. When valid IR signal is received, 

the received IR scan code is stored in hardware FIFO and IRQ is asserted. The 

IP source code is located in the folder “ip\TERASIC_IRM”. The IP is enraptured 

as a QSYS Compliant IP. The register file of the IP is defined as bellows 

Regist
er 

Index 

Register 
Name 

Description Read/W
rite 

0 Scancode Read: 
Read a received scan code from the FIFO. If 
FIFO is empty, e.g. no scan code is received, 
0xdeadbeef is return. 
 
Write: 
Write any value to clear the interrupt flag.  

RW 



 

 
 8 Line Following Robot with PID Terasic Inc. 

When host interrupt handle routine handles 
the interrupt event, it should clear this 
interrupt flag. 

 

The CIrRx C++ class defined in IrRx.cpp/h is designed to handle the received IR 

scan code. The CIrRx C++ class is derived from theCQueue C++ class defined in 

Queue.cpp/h. The received IR scancode will be stored in the Queue. The main 

program can use the member function IsEmpty to check whether any IR 

scancode is received. If there queue is not empty, main program can use the 

member function Pop to get the received scan code.  To start receiving IR scan 

code, the main program should call the member function Enable to enable 

interrupt handling. To disable interrupt handing, main program can call the 

member function Disable. 

 

 

PID Controller 

 

The PID Controller is implement in the Main.cpp.In this demonstration, 

only P and D are used. The PID code  looks like the following. The error input 

will be used to generate new output value. The output value will be used to 

generate the turn value which is used to generate LeftSpeed and RightSpeed 

for the two motors on theA-Cute Car. In this demonstration, kp is 1.0 and kd is 

8.0. (ki is 0.0) 

intergral = intergral + error; 
derivative = error - last_error; 
last_error = error; 
output = (kp * error + ki * intergral + kd * derivative); // PID 
turn = output * 100.0; 
 
LeftSpeed = Speed + turn; 
RightSpeed = Speed - turn; 
 
Car.SetSpeed(LeftSpeed, RightSpeed); 

 

The aboveerror value is calculatedby the following codes. The szAdc[] array 

present the seven values response from the seven sensors. 

error = 0.0; 
for(i=0;i<SENSOR_NUM;i++) 
  error += szAdc[i] * (i+1); 



 

 
 9 Line Following Robot with PID Terasic Inc. 

 
fSum = 0; 
for(i=0;i<SENSOR_NUM;i++) 
fSum += szAdc[i]; 
if (fSum> 0){ 
  error /= fSum; 
  error -= 4.0;  // mean is 4.0 
}else{ 
  error = 0; 
} 

 

In this demonstration, the PID is looped 250 times per second. The loop count 

is determine by the nInterationInterval available. nInterationInterval is 

defined as in the following. To reduce the interval time (increase loop count 

per second), developer needs to speed up the c-code in the loop. 

nInterationInterval = alt_ticks_per_second()/250; 

 

 

Demo Setup 

 

Here is the procedure to setup the demonstration: 

 Set Power Switch on SDC card to OFF position (Figure 4) 

 Insert four AA batteries 

 Set Power Switch on SDC card to ON position 

 This demonstration is the power on default code of theA-Cute Car. If 

the default code is erased, please execute test.bat in the folder for 

config the FPGA on de0-nano:  

A-Cute Car CD/DE0_NANO_LINE_FOLLOWER_PID/demo_batch 

 Perform line following function: 

 Prepare your BLACK LINE map 

 Place theA-Cute Car on the BLACK LINE 

 Press KEY0 or KEY1 on DE0-Nano to start. Pressing 'Play' button 

onthe remote controller can also start the following function. 

 Removing the car from the track will stop the following function. 

Press "Power" button on the remote controller can also stop the 

following function. 

 Perform IR remote control (Figure 5) 
 Place the car on the ground 

 Volume Up or Channel Up: car moves forward 

 Volume down or Channel Down: car moves backward 

 Adjust left: car turns left 



 

 
 10 Line Following Robot with PID Terasic Inc. 

 Adjust Right: card turns right 

 A: car beep 

 B: car two lamps active toggle 

 C: car beeps and lamps active 

 Number 0~9: adjusts car moving speed (0: mini, 9 maxi) 

 Power: stop car 

 Play: starts line following function 

 

Figure 4TerasicA-Cute Car 

 

 

 

 

 

 

 



 

 
 11 Line Following Robot with PID Terasic Inc. 

Figure 5 IR Remote Controller 

Rebuild Project 

 

The project is built by Quartus 1.5. The project source code is located in the 

folder: 

A-Cut Car System CD/DE0_NANO_LINE_FOLLOWER_PID 

Use Quartus to open the Quartusproject file DE0_NANO_SMART_CAR.qpf and 

click the menu item “ProcessingStart Compilation” will start the compile 

process. When compilation is completed, an output file 

DE0_NANO_SMART_CAR.sof will be generated under the output_files folder. 

 

The Nios II project is created by NIOS II 15.1 Software Build Tools for Eclipse.  

The project source code is located on the folder: 

A-Cut Car System CD/DE0_NANO_LINE_FOLLOWER_PID/software 

Launch NIOS II 15.1 Software Build Tools for Eclipse, the set above folder as 

workspace. In the Project Explore Window, right click 

“LINE_FOLLOWER_bsp[nios_system]” to popup a system menu, and select 

“NIOS II Generate BSP” to build the BSP. Then, right click “LINE_FOLLOWER” to 

popup a system menu, and select “Build Project” to generate binary file. When 

building is completed, an output file LINE_FOLLOWER.elf will be generated 

under the folder: 

A-Cut Car CD/DE0_NANO_LINE_FOLLOWER_PID/software/LINE_FOLLOWER 

 

Improvement 

 

Here shows some methods that can improve the line following performance: 

 Fine tune the kP and kD parameters in the PID controller. 

 Implement the PID controller in RTL code to reduce the response time 

(increase loop count per second). 

 Increase battery voltage to speed up motor. 


	Abstraction
	Content
	Reference Design Overview
	LTC2308SPI Controller
	PWM Controller
	IR Receiver Controller
	PID Controller
	Demo Setup
	Rebuild Project
	Improvement

