

Simplifying System IntegrationTM

73S12xxF
Software User Guide

September 14, 2009
Rev. 1.50

UG_12xxF_016

73S12xxF Software User Guide UG_12xxF_016

2 Rev. 1.50

© 2009 Teridian Semiconductor Corporation. All rights reserved.
Teridian Semiconductor Corporation is a registered trademark of Teridian Semiconductor Corporation.
Simplifying System Integration is a trademark of Teridian Semiconductor Corporation.
Windows, Visual Basic, Visual Studio and Visual C/C++ are registered trademarks of Microsoft
Corporation.
Pentium is a registered trademark of Intel Corporation.
µVision is a registered trademark of Keil (an ARM® Company).
Linux is a registered trademark of Linus Torvalds.
MasterCard is a registered trademark of MasterCard Worldwide.
Visa is a registered trademark of Visa Inc.
All other trademarks are the property of their respective owners.

Teridian Semiconductor Corporation makes no warranty for the use of its products, other than expressly
contained in the Company’s warranty detailed in the Teridian Semiconductor Corporation standard Terms
and Conditions. The company assumes no responsibility for any errors which may appear in this
document, reserves the right to change devices or specifications detailed herein at any time without
notice and does not make any commitment to update the information contained herein. Accordingly, the
reader is cautioned to verify that this document is current by comparing it to the latest version on
http://www.teridian.com or by checking with your sales representative.

Teridian Semiconductor Corp., 6440 Oak Canyon, Suite 100, Irvine, CA 92618
TEL (714) 508-8800, FAX (714) 508-8877, http://www.teridian.com

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 3

Table of Contents
1 Introduction ... 5

1.1 Acronyms .. 5
1.2 Use of this Document... 6
1.3 Statement of Compliance ... 6

2 Design Guide ... 7
2.1 Development Environment .. 7

2.1.1 Hardware Requirements .. 7
2.1.2 Software Requirements ... 7

2.2 Software Build Environment ... 8
2.2.1 Software Architecture .. 8
2.2.2 API/Library and Header Files ... 10
2.2.3 External Application ... 11
2.2.4 Embedded Application .. 11
2.2.5 Build Environment with the Serial Boot Loader .. 11
2.2.6 Build Environment with the USB DFU Boot Loader .. 14

3 Testing Environment ... 17
3.1 EMV Level I Compliant Testing .. 17
3.2 CCID Testing ... 17

3.2.1 USB Testing: Microsoft HCT/DTM, and USB Command Verifier 17
3.2.2 Serial Testing .. 18

4 Design Reference .. 19
4.1 Memory Map .. 19

4.1.1 Program Memory ... 19
4.1.2 External Data Memory ... 20
4.1.3 Internal Data Memory .. 20

4.2 Low-level API ... 20
4.2.1 Keyboard Driver API – Available with all 73S12xxF Devices 21
4.2.2 LCD Driver API – Available with all 73S12xxF Devices .. 23
4.2.3 LED Driver API – Available with all 73S12xxF Devices... 24
4.2.4 Real Time Clock API - Available with the 68-pin 73S12xxF 26
4.2.5 Smart Card Interface Driver API – Available with all 73S12xxF Devices 30
4.2.6 SERIAL (RS232) Driver API – Available with all 73S12xxF Devices 39
4.2.7 USB API – Available with 64K Flash version of the 73S12xxF 42
4.2.8 Clock Generator Circuit API – Available with all 73S12xxF Devices 51
4.2.9 Power Management API – Available with all 73S12xxF Devices 52
4.2.10 Analog Threshold Management Driver API – Available with all 73S12xxF Devices 53
4.2.11 Event Management API – Available with all 73S12xxF Devices 55
4.2.12 Timers API – Available with all 73S12xxF Devices ... 57
4.2.13 User IO API – Available with all 73S12xxF Devices ... 58
4.2.14 External Interrupts API – Available with all 73S12xxF Devices 60
4.2.15 Special Function Register API – Available with all 73S12xxF Devices 61
4.2.16 Flash/Memory API – Available with all 73S12xxF Devices.. 63
4.2.17 Boot Loader and Passcode Management – Available with the LAPI-*BL.lib Only 67
4.2.18 Security Mode Management - Available with the LAPI-*BL.lib Only 69
4.2.19 Other Miscellaneous API Calls – Available with all 73S12xxF Devices 71

4.3 High-Level API ... 72
4.3.1 Smart Card Control ... 72

4.4 Flash Programming ... 85

73S12xxF Software User Guide UG_12xxF_016

4 Rev. 1.50

4.5 Test Tools and Certification/compliance Tests .. 85
4.5.1 EMV LEVEL I Certification Tests .. 86

4.5.1.1 EMV Test Mode ... 86
4.5.1.2 MasterCard Loopback Test .. 87
4.5.1.3 VISA-1 Loopback Test .. 90

4.5.2 VISA-2 Loopback Test .. 91
5 Related Documentation .. 92

6 Contact Information .. 92

Revision History .. 93

Figures
Figure 1: Software Architecture Diagram .. 9
Figure 2: Device Options for Building with the Boot Loader .. 12
Figure 3: Target Options for Building with the Boot Loader .. 13
Figure 4: C51 Options for Building with the Boot Loader .. 13
Figure 5: Target Options for Building with the DFU Boot Loader .. 15
Figure 6: C51 Options for Building with the Boot Loader .. 16
Figure 7: Memory Layout ... 19
Figure 8: Smart Card Rx/Tx Timing .. 31
Figure 9: Boot Loader Scenario ... 67
Figure 10: FLASH Download and Programming Process ... 68
Figure 11: EMV PSE Test Flow Chart .. 87
Figure 12: MCI Test Flow Chart with PTS/PPS .. 88
Figure 13: MCI Test Flow Chart without PTS/PPS ... 89
Figure 14: VISA-1 Loopback Test Flow Chart .. 90
Figure 15: VISA-2 Loopback Test Flow Chart .. 91

Tables
Table 1: Upper 1 KB External Data Memory layout .. 20
Table 2: IRAM Special Function Register Map ... 20
Table 3: Interrupt Sources and Priority Level .. 21
Table 4: Clock Speeds and Baud Rates Supported ... 51
Table 5: Security Mode Actions Allowed .. 70

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 5

1 Introduction
The Teridian Semiconductor Corporation 73S12xxF single-chip Smart Card Terminal Controllers consist
of the 73S1209F, 73S1210F, 73S1215F and 73S1217F. These System-on-Chip devices provide the
functions necessary to build a low-cost smart card terminal.

The 73S12xxF Evaluation Board allows development of an embedded application in conjunction with an
In-Circuit Emulator (ICE). An application can be programmed in either ANSI C or 80515 assembly
language using this evaluation board.

Teridian provides a development Toolkit that includes a set of libraries (Application Programming
Interface or API). The API is written in ANSI C to control all the features present on the evaluation
boards. These libraries include functions to manage the low-level 80515 core functions such as memory,
clock, power modes, interrupts; and high-level functions such as the Liquid Crystal Display (LCD),
keyboard, Real-Time Clock (RTC), smart card interfaces, Universal Serial Bus (USB)/Serial interfaces and
I/Os. These APIs reduce development time dramatically, since they allow the developer to focus on
developing the application without dealing with the low-level layer such as hardware control, timing, etc.
This document describes the Toolkit’s hierarchical layers and how to use them.

Certain function blocks (such as USB and RTC) are not available on all 73S12xxF devices. As a result,
the related APIs can not be used with some ICs. Refer to the data sheets for further details.

This document applies to the following components:

• LAPI Version 4.00 (DFU), LAPI Version 3.30 (BL), LAPI Version 2.30 (non-BL)
• HAPI Version 4.00 (DFU), HAPI Version 3.30 (BL), HAPI Version 2.40 (non-BL)
• Serial Pseudo-CCID Application Version 3.1
• USB CCID Application Version 2.1 (DFU), USB CCID Application Version 1.5 (non-DFU)
• Devices: 1215A05, 1217A06 and 1210/1209A02

1.1 Acronyms
APDU Application Protocol Data Unit
API Application Programming Interface
ATR Answer To Reset
BL Boot Loader
CCID Integrated Circuit Card Interface Device
COM Communication Port
DFU Device Firmware Upgrade
DTK Development ToolKit
DTM Device Test Manager
EMV Euro, MasterCard®, Visa®
HAPI High-level API
HCT Hardware Compatibility Test
ICC Integrated Circuit Card
ISO International Standards Organization
ISP In-System Programming
JICSAP Japan IC Card System Application council
LAPI Low-level API
LAPIE Low-level API exerciser
LCD Liquid Crystal Display
Non-BL Non Boot Loader
PC Personal Computer
PIN Personal Indentification
RAM Random Access Memory
ROM Read Only Memory

73S12xxF Software User Guide UG_12xxF_016

6 Rev. 1.50

RTC Real Time Clock
TSC Teridian Semiconductor Corporation
USB Universal Serial Bus
WHQL Windows Hardware Quality Lab

1.2 Use of this Document
The reader should be familiar with microprocessors, particularly the 80C51/80C52/80515 architecture,
firmware, embedded software development and smart card application. Knowledge of the USB 2.0
Specification, ISO 7816 Parts 1/2/3/4 and EMV2000 standards may also be helpful.

This document presents the software features as designed in the 73S12xxF Evaluation Board. Users
should also have available other 73S12xxF publications such as the data sheet for the particular
73S12xxF device being used, the 72S12xxF Evaluation Board User’s Guide, and the application notes
for additional details and recent development information.

1.3 Statement of Compliance
The software and hardware for the 73S12xxF meets or exceeds USB 2.0 Full Speed, EMV2000 (both
T=0 and T=1 protocols) and ISO 7816 protocol standards. The Windows® XP USB CCID Driver is
designed to meet Microsoft Windows Logo compliance. Refer to the respective documentation for further
information about these standards.

The embedded applications (and their associated libraries) have passed the USB.org USB Command
Verifier version 1.3 Beta, Microsoft HCT version 12.01.1 for USB, Microsoft DTM for both XP and Vista,
and EMV Level 1 compliant testing.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 7

2 Design Guide
This section provides designers with basic guidance in developing smart card reader applications utilizing
the TSC 73S12xxF devices. There are three types of applications that can be developed:

• A Host application (for example: an application residing on a PC, e.g. Windows 2000, Windows XP,

Windows CE or in a host microprocessor).
• An Embedded application using both High-level APIs and Low-level APIs (in Flash).
• An Embedded application using the Low-level APIs only (in Flash).

There are two options to connect the 73S12xxF Evaluation Board or demo boards to a PC or host
controller:

• UART/RS232 serial interface.
• USB V2.0 full speed/12 Mbps interface.

2.1 Development Environment
2.1.1 Hardware Requirements
The recommended hardware requirements include:

• Teridian 73S12xxF Evaluation Board.
• AC Adaptor (AC/DC output) or Variable Bench Power Supply.
• PC Pentium® with 512 MB RAM and 10 GB hard drive, 2 COM ports, and 2 USB port (if the USB

interface is utilized) running Windows XP.

Optional Hardware includes:

• Signum Systems ADM-51 In-Circuit Emulator (for debugging the embedded application) with or

without trace capability. Signum references this device as the ADM-51 Emulator. This device is
configured to use one of the PC’s USB Ports. Contact Signum Systems at www.signumsystems.com
for the latest version of the ICE software.

• The Teridian Flash Programming Tool (for programming Flash when a Signum ADM-51 ICE is not
available).

2.1.2 Software Requirements
The following are the recommended software requirements:

• For embedded application programming:

 Keil™ Compiler. Version 7.0 or later is recommended.
• Keil μVision®2 or μVision3 IDE.
• If an ICE is used, Signum Systems software (comes with Signum Systems ADM-51 ICE hardware).

The ICE can also be used to program Flash.
• A Teridian Flash Programmer (TFP) module for programming Flash.
• For Windows PC application programming:

 Visual Basic®, Visual Studio® or Visual C/C++® for Windows 2000 or Windows XP.
• Optionally, Keil’s extended linker (LX51 instead of BL51) for code size optimization purposes.

The following software tools/programs are included in the 73S12xxF Development Kit and should be
installed on the development PC:

 USB View – a shareware PC tool which can be downloaded from www.usb.org.
 usbccid.sys/usbccid.inf – a Microsoft generic Windows XP CCID USB driver.

http://www.signumsystems.com/�
http://www.usb.org/�

73S12xxF Software User Guide UG_12xxF_016

8 Rev. 1.50

 CCIDTSC-*.sys/CCIDTSC-*.inf – Teridian Windows Drivers.
 ccidusb-*.hex – an embedded application used for USB CCID communications with Windows or

Linux OS. This embedded program can be used with either Microsoft’s generic USB driver or the
Teridian driver.

 ccidrs232.hex – an embedded application used for RS232/Serial communications with a host
running Windows OS.

 CCID-USB.exe – a PC application written in C# to be used in conjunction with the CCIDTeridian.sys
USB driver with the evaluation board programmed with the CCIDUSB-*.hex firmware.

 Low-level API Library – an embedded flash module that provides low-level APIs (physical layer) to
control the 73S12xxF.

 High-level API Library – an embedded flash module at the protocol level that provides APIs to control
different features of the Smart Card. EMV Level I protocol layer is implemented within this module.

 Include/header files for both the Low-level API and the High-level API libraries.
 Sample code for Serial’s Pseudo CCID protocol. For the USB interface, the USB CCID firmware

source code is also included.
 Linux driver for USB CCID and Linux Application for USB DFU interface.

2.2 Software Build Environment
Install the Keil compiler and select all default options (recommended). When prompted for a target
device, select TSC-73S12xxF. This option may not be available on older versions of the compiler. In this
case, select TSC 73M6513. For development, an upgrade to a newer version of the Keil compiler is
highly recommended. This option can be changed at any time by:

Under ‘Project’ – ‘Select Device for target ‘Target1’ ‘– CPU tab’ – scroll down to TDK Semiconductor
(with older version of Keil) or Teridian Semiconductor (available with newer version of Keil) – select
either 71M6513 or 73S12xx.

Under ‘Project’ – ‘Options for target ‘target1’’ – Target tab – Xdata memory field, the RAM start
address should be set to 0x0000, and RAM size should be set to 0x0800.

2.2.1 Software Architecture
The 73S12xxF software architecture is partitioned into three separate layers:

• The Low-level API (LAPI) device or physical layer, which contains a set of function calls to directly

manage the peripherals and CPU management (such as clock, timing, power saving, etc.).
• The second layer is the High-level API (HAPI), which is essentially the protocol layer. It provides

functions for communication with the smart card (ICC).
• The third layer is the application layer. This layer is left for the application software developer to

design any suitable smart card reader applications.

Figure 1 shows the partitions for each software component and its approximate memory size. As
illustrated, there are many different ways an application can be designed and implemented. Section 4
Design Reference describes the API functions within each component in more detail. The embedded
application sample source code for most of the main features of the chip is provided in the release.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 9

Application

Low Level API - Core

Hardware

73S12xxF

PC

Embedded
Application

TSC Serial Pseudo -
CCID Application

(32K)

USB CCID Driver or
COM port Driver

size: 12K

USB

COM / SLIP Message

P
ro

to
co

l L
ay

er
D

ev
ic

e
La

ye
r

A
pp

lic
at

io
n

La
ye

r

IC
C

14K

TSC USB CCID
Application

(36K)

C
O

M

SC LAPI (Internal
slot only)

SC LAPI (Internal
or I2C interface)

size: < 1K Size: 2K

Figure 1: Software Architecture Diagram

(Sizes indicated are approximate)

73S12xxF Software User Guide UG_12xxF_016

10 Rev. 1.50

2.2.2 API/Library and Header Files
The library files included in the software development kit are listed below (see Figure 1: Software
Architecture Diagram for the library partitions). The following nomenclature applies to the file names:

• ‘?’ is either ‘S’ (for Single-8010) or ‘M’ (for Multiple-8010)
• ‘xx’ is ‘BL’ (for Serial Boot Loader), ‘DFU’ for USB DFU Boot Loader or empty.
• There are other versions such as LAPI-MS1.LIB, LAPI-SLED.LIB, that are specific builds for specific

hardware setups and are typically NOT included in the sample application project files. For all
evaluation purposes, these files will NOT be used.

The High-level API library does not include a USB API. For the USB 2.0 Specification (specifically,
chapter 9 of the specification), the LAPI layer handles all endpoint 0 (or control endpoint) communications
with the host; thus a High-level API for USB is not necessary. An application can call the LAPI USB
functions directly for all of its bulk and interrupt endpoint communications.

 LAPI-?xx.lib1

 I2C_SC-?xx.lib Low-level API library containing control of both internal and external smart
card slots. This library should be included in an application that supports
an I2C interface via an 8010 IC.

 Low-level API library containing all necessary core controls.

 ICC_API-?xx.lib High-level Smart Card API library for Smart Card.

In addition, the following header (.h) and source (.c) files are included:

 API_12.h Low-level header file. Include this file in all embedded applications.
 Api_struct_12.h Low-level header file with all enumeration types defined.
 Reg12xx.h Low-level header file specific to the 73S12xxF peripheral registers.
 LangIDs.h Low-level header file. Include this file in all embedded applications for USB

communication.
 Portable.h Low-level header file. Include this file in all embedded applications.
 Reg_banks_12.h Low-level header file. Include this file in all embedded applications.
 ICCMgt.h High-level ICC header file. Include this file when the ICC_API.lib is used.
 Allocate.c High-level API common file that indicates the specific number of commands

that can be used for each High-level API library.
 Allocate.h High-level API common header file used with allocate.c.
 Commands.h High-level API common header file used with allocate.h.
 CCID Source See the CCIDAP_73S12xx_V...pdf file under the CCID USB Firmware

folder.
 P-CCID Source See the 12xxANPseudo-CCID-SerialProtocol…pdf file in the TSC-

12xxRS232\vx.xx\TSCP-CCID\Firmware\Doc folder.

1 When the low-level LAPI-?xx.LIB library is included in an application, the compiler requires that the
modules within the library be exclusively selected; otherwise, it will not be included. No error/warning will
be displayed during the build but when the hex file is downloaded and run, the intended function will not
operate as expected. To avoid this problem, right-click on the low-level LAPI-?xx.LIB library (after adding
it to the project), select ‘options for File LAPI-?xx.LIB’ – and under ‘Select Modules to Always Include’,
select the modules that the application uses, as listed. If program space permits, select all listed
modules. This setup can be optimized later (once the application code is stable) by deselecting unused
modules to reduce code space.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 11

2.2.3 External Application
An external application can run on a PC or any host microprocessor. The 73S12xxF supports two
options to interface with a PC external application: RS-232/Serial interface or USB V2.0 full speed
interface.

RS232 / Serial Interface
When using the RS-232 or a generic asynchronous serial interface, TSC can provide the sample source
code for a serial / RS-232 firmware application. It implements a SLIP protocol which enables the transfer
of data between the PC (or a host microprocessor) and the 73S12xxF. The serial communication speed
can range from 9600 bps to 115200 bps, with consideration of the selected CPU clock speed. Contact a
Teridian Semiconductor sales representative for availability. For more information, refer to the Pseudo-
CCID Host GUI Users Guide, the Pseudo-CCID Host Application Guide, and the Pseudo-CCID
Serial/RS232 Firmware Application Note.

USB V2.0 Full Speed Interface
When using the USB V2.0 full speed interface, the communication speed is fixed at 12 Mbps. Software
included with the TSC 73S12xxF Evaluation Boards provides sample source code for a USB firmware
application to be run with either a Microsoft generic CCID USB driver (for XP) or the TSC customized
driver (also included in the release). When the CCID-USB firmware is loaded and either the Microsoft or
TSC driver is used on the host side, any PC/SC compliant application for Windows XP would be able to
communicate and control the Reader. For more information, refer to the USB-CCID Host GUI Users
Guide and the CCID Application Note.

2.2.4 Embedded Application
A user written embedded application can link directly to the TSC low-level API to better handle hardware
control, timing or interrupts. In addition, an embedded application can be significantly simplified by using
the TSC High-level API to gain access to the Smart Card protocol interfaces, especially when software
certification is desired to meet USB 2.0, EMV 2000, ISO 7816 or Microsoft Windows Logo.

2.2.5 Build Environment with the Serial Boot Loader
Starting with the Teridian P-CCID Release version 2.00 or higher, the Boot Loader API is included in the
Low-Level library (LAPI-?BL.lib). When linking the application with the libraries containing the boot
loader, a few rules must be adhered to. Follow the instructions described below.

LAPI-?BL.lib version 3.xx supports the Boot Loader with Serial/RS-232 interface only.

73S12xxF Software User Guide UG_12xxF_016

12 Rev. 1.50

Figure 2: Device Options for Building with the Boot Loader

Figure 2 shows the Device configuration build options. The selected device should be one of the Teridian
80515-based products, either the 6513 or the 73S12xxF family.

The Extended Linker (LX51) option is required to pack both the Boot Loader and the Teridian Pseudo-
CCID application within 32 K of Flash. As a result, applications that use these components must be built
with this option enabled in the compiler in order for the project to build.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 13

Figure 3: Target Options for Building with the Boot Loader

Off-chip code memory should be set to start at 0x0200 since the first page (512 bytes) of Flash is
reserved for boot code (see Figure 3).

Figure 4: C51 Options for Building with the Boot Loader

73S12xxF Software User Guide UG_12xxF_016

14 Rev. 1.50

The Preprocessor Symbol “MULTI8010” (refer to Figure 4) is used for a hardware configuration where
multiple 8010 parts are used to drive up to four external smart card slots (any slot that is higher than
ICC_1ST). Associated library or project files set up for a multiple 8010 configuration have the letter ‘M’ in
their filename. For example, the Low-Level library that supports the MULTI8010 configuration would be
named LAPI-MBL.lib.

The Preprocessor Symbol “SINGLE8010” is used instead of “MULTI8010” for a hardware configuration
where a single 8010 and a custom mux are used to drive up to four external smart card slots. Associated
library or project files set up for single 8010 configuration have the letter ‘S’ in their filename. This
configuration is supported under the Serial/RS232 interface only.

The preprocessor symbol “BOOTLOADER” is used to incorporate the Serial/RS232 boot loader portion of
the LAPI. This directive is used when linking to a library with ‘BL’ in its name. Interrupt vectors start at
address 0x0200 due to the BOOTLOADER’s residence. All associated library or project files set up for
the Boot Loader configuration have the letters ‘BL’ in their filename.

TSCP-CCID Release version 2.00 or higher (a separate release built specifically for Teridian’s
Pseudo-CCID RS-232 Serial interface) has configured all its build files for the appropriate build
environment and specific configuration. It is NOT recommended that these values be changed, in other
words, the project files (*.uv2) should not be altered. Contact a Teridian Sales Representative for further
inquiry.

2.2.6 Build Environment with the USB DFU Boot Loader
Starting with the Teridian CCID USB Release version 2.00 or higher, the DFU Boot Loader is included in
the Low-Level library (LAPI-MDFU.lib). The DFU Boot Loader has a different architecture than the
Serial/RS232 Boot Loader described in above section. It is a stand-alone firmware application that runs
as a DFU class (0xFE) device whereas the Serial/RS-232 Boot Loader is part of the LAPI library. When
linking the application with the libraries containing the DFU boot loader a few rules must be adhered to.
Follow the instructions described below.

The DFU boot loader is supported under the USB interface only.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 15

Figure 5: Target Options for Building with the DFU Boot Loader

Figure 5 shows the application’s starting address. It must be set to start at 0x1802. The Flash address
range from 0x0000 through 0x17FF is reserved inclusively for the DFU Boot Loader.

73S12xxF Software User Guide UG_12xxF_016

16 Rev. 1.50

Figure 6: C51 Options for Building with the Boot Loader

In Figure 6, the interrupt vectors address must be set to where the application starts, as described above.

The Preprocessor Symbol “DFU” is used to link in the DFU option as implemented in LAPI-MDFU.LIB
and ICC-API_MDFU.lib. Review the 12xxBootLoaderFirmwareANV…pdf for detailed information about
this option. The associated libraries built to support this option has the letters “DFU” in their filenames.

The Preprocessor Symbol “LEDMGT” indicates status of Smart Card’s events as described in the
CCIDAP_73S12xx_V…pdf. This option is only implemented and applicable at the firmware application
level. Any version of the libraries would work whether this option is used or not.

The USB interface only supports “MULTI8010” hardware configuration; thus, “SINGLE8010” will not be
used.

The Preprocessor Symbol “HIGHCPU” is to set the CPU clock to run at 24MHz. This option is set and
used in the CCID application code. Without this option, the default CPU clock is 3.69MHz.

The source code included in the CCID release has all its build files set up for the appropriate build
environment and specific configuration. It is NOT recommended that these values be changed, in other
words, the project files (*.uv2) should not be altered. Contact a Teridian Sales Representative for further
inquiry.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 17

3 Testing Environment
Teridian performs conformance and certification testing to verify both the 73S12xxF IC (hardware and
electrical) and libraries (protocol, timing and application firmware and drivers). These tests are dictated
by specific standards. Each standard has a specific set of hardware and software configuration
requirements. This section describes the protocol portion of the testing that has been performed.

3.1 EMV Level I Compliant Testing
This section describes the EMV Level I compliant protocol testing. EMV Level I Electrical testing is
beyond the scope of this document.

Depending on the accredited test labs, EMV Level I compliant protocol testing can be done using either a
Visa or a MasterCard test suite under the Payment System Environment (PSE). Each test environment
has its own setup/configuration and selected tests for each setup.

For example, in the MasterCard test suite, there are a few configurable choices that must be considered.
Each answer to these six questions would require a different test setup and expected behavior of the
reader. The true/false answers shown after the questions below were selected for Teridian’s EMV Level I
compliant testing.

 Terminal supports parameters negotiation technique: (true/false) - true
 Terminal deactivates after I-Block with LEN = 0xFF: (true/false) - true
 Terminal supports resynchronization: (true/false) - false
 Terminal deactivates after BWT excess: (true/false) - true
 Terminal deactivates after CWT excess: (true/false) - true
 Terminal sends S(Abort Response): (true/false) – false

The EMV Level I Master Card test suite was performed by both an independent/accredited test lab and
by Teridian’s internal test lab. The testing was done using internal slot (slot #1) and all internal EMV
Level I tests passed.

EMV Level I formal compliant test at an accredited lab (Cetecom) is in progress.

3.2 CCID Testing
The 73S12xxF part provides two control interfaces to the host: USB and Serial/RS232. Using either of
these bus types, a command can be sent from the host to the chip to control the Smart Card. Because
of this control interface, testing under the CCID Specification usually involves two parts: Smart Card and
Bus type (USB or Serial/RS232).

3.2.1 USB Testing: Microsoft HCT/DTM, and USB Command Verifier
Teridian used three different tests to verify USB CCID compliance:

1. Microsoft Hardware Compatibility Test (HCT) for Windows Logo or their updated test suite: Device

Test Manager for Vista and Windows XP, which tests CCID and PC/SC compliances.
2. USB 2.0 Chapter 9 Test (USB Command Verifier Test).
3. Linux Driver test using the available smart card test tool downloaded from the internet.

The HCT/DTM Smart Card test was completed in-house using the IFDTest.exe that came with HCT
version 12.01.1. (Note: This test still requires the use of older PC/SC test cards that are no longer
available for purchase) At this release, the two Vista drivers have been certified with Microsoft. The ad-
hoc testing was performed using both the TSC USB driver and the Microsoft generic USB CCID driver.
The DTM test was run and certified with Microsoft using only the TSC customized driver.

73S12xxF Software User Guide UG_12xxF_016

18 Rev. 1.50

The USB Command Verifier version 1.3 Beta (latest version) was also run with this release using the TSC
customized driver. The USB.ORG compliant testing was completed both in house and by an accredited,
independent lab (NTS). Both tests passed.

The Linux driver was done in-house, but previously version 1.20 of the TSC CCIDUSB firmware was
certified by the Linux CCIDUSB driver developer.

3.2.2 Serial Testing
PCCID is built in a separate release that includes a host application to control the 73S12xxF device
programmed with the PCCID firmware. The testing was done using this proprietary interface ranging
from EMV Level I protocol testing to slot-switching Smart Card Tests.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 19

4 Design Reference
As depicted in Figure 1: Software Architecture Diagram, the 73S12xxF provides many design options for
an application developer. Details of the software modules are described in this section.

4.1 Memory Map
The 73S12xxF contains a high performance, embedded 80515 core, referred to as the ‘core’. It executes
all ASM51 instructions and has the same instruction set as the 80C51.

The core supports separate Program and Data memory as shown in Figure 7. The 73S12xxF family of
devices has two program sizes (32 KB and 64 KB). This program space is segmented into 512-byte
pages. There are 2048 bytes of external data RAM (XData or XRAM) and 256 bytes of internal data
RAM (IData or IRAM).

0000 00

80

FFFF

0000

FFFF FFFF

07FF
0800

SFRIRAM
upper

IRAM
lower

XRAM
2 K Bytes

FLASH
PROGRAM
MEMORY

64 K Bytes

EXTERNAL
DATA

MEMORY

INTERNAL
DATA

MEMORY

Reserved for
Smart Card,

USB,
Peripheral

Control
Registers

7F
80

FC00

Direct
Addressing

Indirect
Addressing

Direct/Indirect
Adressing

Figure 7: Memory Layout

4.1.1 Program Memory
The 73S12xxF is available with either 64 KB or 32 KB of program memory. The 73S1209F/73S1210F
have 32 KB and the 73S1215F/73S1217F have 64 KB. Contact a Teridian Sales Representative for
ordering information.

73S12xxF Software User Guide UG_12xxF_016

20 Rev. 1.50

4.1.2 External Data Memory
The 2 KB of XRAM are available at address locations 0x0000 through 0x07FF. The upper 1K bytes of
the external data memory space (from 0xFC00 to 0xFFFF) is reserved for additional special function
registers for the 73S12xxF chip and is segmented as shown in Table 1.

Table 1: Upper 1 KB External Data Memory layout

Function Space # Bytes Starting Address Ending Address
Peripheral Control 128 0xFF80 0xFFFF

Smart Card Control 384 0xFE00 0xFF7F
USB Control 512 0xFC00 0xFDFF

4.1.3 Internal Data Memory
The 256 bytes of IRAM are available for use as scratch-pad RAM.

The IRAM Special Function Registers are mapped as shown in Table 2. All registers appearing in the
first column (000b) are bit-addressable:

Table 2: IRAM Special Function Register Map

HEX/BIN 000b 001b 010b 011b 100b 101b 110b 111b
0xF8 - 0xFF
0xF0 - 0xF7 b
0xE8 - 0xEF
0xE0 - 0xE7 acc
0xD8 - 0xDF wdcon
0xD0 - 0xD7 psw kcol krow kscan kstat ksize korderl korderh
0xC8 - 0xCF t2con
0xC0 - 0xC7 ircon
0xB8 - 0xBF ien1 ip1 s0relh s1relh
0xB0 - 0xB7 p3 flshctl pgadr
0xA8 - 0xAF ien0 ip0 s0rell
0xA0 - 0xA7 usr15

8
udir15

8

0x98 - 0x9F s0con sobuf ien2 s1con s1buf s1rell
0x90 - 0x97 usr70 udir70 dps erase
0x88 - 0x8F tcon tmod tl0 tl1 th0 th1 ckcon mclkctl
0x80 - 0x87 sp dp1 dph dpl1 dph1 wdtrel pcon

4.2 Low-level API
A low-level Application Programming Interface (API) is provided to control all hardware peripherals. An
application can link to the low-level API library to utilize the functions described in subsequent sections.

Before using the low-level API, an embedded application should call the API_Init() routine in the
beginning of the program as part of its initialization. As a general guideline, any feature to be included or
used in an application must first call its associated initialization routine. For example, to link the USB
module into an application, USB_Init() must first be called to initialize its associated registers for the USB
functions.

Each feature available with the 73S12xxF device has a sample application to demonstrate the library
function’s usage.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 21

The core provides four interrupt priority levels among six group sources. The 73S12xxF sources are
grouped as shown in Table 3. All sources belonging to a group share the same interrupt priority level.
The LAPI sets up the four priority levels for these groups as shown in Table 3.

Table 3: Interrupt Sources and Priority Level

Group 6 Group 5 Group 4 Group 3 Group 2 Group 1
I2C USB Smart Card Ext Int 1 Timer 0 Ext Int0
VDD RTC Timer 1 Ext Int 3 Ext Int 2 Serial 1

Analog Keypad
 Serial 0

Priorities as set in LAPI.LIB:
Highest Low High Lowest Lowest Low

The low-level APIs are listed below. Additional details are in the subsequent subsections.

• Keyboard Driver API – Available with all 73S12xxF Devices (page 21).
• LCD Driver API – Available with all 73S12xxF Devices (page 23).
• LED Driver API – Available with all 73S12xxF Devices (page 24).
• Real Time Clock API - Available with the 68-pin 73S12xxF (page 26).
• Smart Card Interface Driver API – Available with all 73S12xxF Devices (page 30).
• SERIAL (RS232) Driver API – Available with all 73S12xxF Devices (page 39).
• USB API – Available with 64K Flash version of the 73S12xxF (page 42).
• Clock Generator Circuit API – Available with all 73S12xxF Devices (page 51).
• Power Management API – Available with all 73S12xxF Devices (page 52).
• Analog Threshold Management Driver API – Available with all 73S12xxF Devices (page 53).
• Event Management API – Available with all 73S12xxF Devices (page 55).
• Timers API – Available with all 73S12xxF Devices (page 57).
• User IO API – Available with all 73S12xxF Devices (page 58).
• External Interrupts API – Available with all 73S12xxF Devices (page 60).
• Special Function Register API – Available with all 73S12xxF Devices (page 61).
• Flash/Memory API – Available with all 73S12xxF Devices (page 63).
• Boot Loader and Passcode Management – Available with the LAPI-*BL.lib Only (page 67).
• Security Mode Management - Available with the LAPI-*BL.lib Only (page 69).
• Other Miscellaneous API Calls – Available with all 73S12xxF Devices (page 71).

4.2.1 Keyboard Driver API – Available with all 73S12xxF Devices
The Keyboard Driver manages the keystroke acquisition using a scrambled algorithm. It is the High-level
API’s role to manage the scrambling algorithm. Up to 30 keys can be managed in a 6 row by 5 column
configuration. The APIs below are written to use Hardware Scan enabling. An application can be written
to bypass Hardware Scanning to perform its own manual key scan functionality. Refer to the 73S12xxF
Data Sheet for information on the keypad bypass mode.

The Keyboard Driver API includes:

• KEY_Init () (page 22)
• KEY_Wait () (page 22)

73S12xxF Software User Guide UG_12xxF_016

22 Rev. 1.50

KEY_Init ()
Purpose Configure the keyboard. This API will call the Set_Event() routine to enable an

Interrupt Service Routine (ISR) to handle keyboard scanning.

Synopsis Void KEY_Init (IN unsigned char rows_cols, IN unsigned char debounce_scan);

Parameters RowsCols: Input parameter

Number of rows on keypad (max value is 6) times eight plus number of columns on
keypad (max value is 5), i.e. rows*8 + cols.

 Debounce_scan: Input parameter
Number of milliseconds to debounce key (granularity is 4ms) plus number of
milliseconds between key scans (1 to 4 ms) 1 = 1 ms; 2 = 2 ms; 3 = 3 ms and 0=4 ms.

Return Codes None.

KEY_Wait ()
Purpose Wait for a keypad input during a maximum time specified by the TimeOut value.

Other events (e.g. Smart Card insertion and removal) can be specified as exit
conditions for this function.

Synopsis KEY_RC KEY_Wait (
 IN Unsigned Int ScanOrder,
 IN Unsigned char TimeOut,
 IN Unsigned Int ExitOnICCInsert,
 IN Unsigned Int ExitOnICCRemoval,
 IN Unsigned Word ExitOnEvent,
 OUT Unsigned Word *ExitOn,
 OUT Unsigned char *KeyCode);

Parameters ScanOrder: Input parameter

Column scan order, in five sets of three bits each, with the least significant 3-bits (0-
2) indexing the first column scanned and bits (12-14) indexing the fifth column
scanned.

 TimeOut: Input parameter
Timeout value in seconds. If no key is entered within this period, the function is aborted.

 ExitOnICCInsert: Input parameter
Specifies which, if any, SmartCard insertion events are exit conditions. Bit[n]
corresponds to ICC[n], bit[1] being mapped to the least significant bit. This option
should NOT be used simultaneously with the ExitOnICCRemoval option.

 ExitOnICCRemoval: Input parameter
Specifies which, if any, SmartCard removal events are exit conditions. Bit[n]
corresponds to ICC[n]. This option should NOT be used simultaneously with the
ExitOnICCInsert option.

 ExitOnEvent : Input parameter
On input, specifies which, if any, other events are exit conditions. Possible values are any
combination of the following:

EVENT_EXT0 0x00000001
EVENT_EXT1 0x00000002
EVENT_EXT2 0x00000004
EVENT_EXT3 0x00000008
EVENT_TIMER0 0x00000010
EVENT_TIMER1 0x00000020
EVENT_ICC 0x00000040
EVENT_RTC 0x00000080 //not available with 73S1205F
EVENT_KEY_DETECT 0x00000100
EVENT_USB 0x00000200 //not available with 73S1205F

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 23

EVENT_VDDF 0x00000400
EVENT_I2C 0x00000800
EVENT_ANALOG 0x00001000
EVENT_USR0 0x00002000
EVENT_USR1 0x00004000
EVENT USR2 0x00008000
EVENT_USR3 0x00010000
EVENT_ES 0x00020000

 ExitOn: Output parameter
If KEY_ERR_SMARTCARD_xxx return code, it specifies which SmartCard event
occurred. Bit[n] corresponds to ICC[n]. If KEY_ERR_EVENT, it specifies which
EVENT occurred.

 KeyCode: Output parameter
Specifies the KeyCode that was pressed. The KeyCode is equal to
((row-1) * KeypadCols) + (col-1), where column ranges from 1 to KeypadCols and
row ranges from 1 to KeypadRows.

Return Codes
 KEY_OK Successful operation: a valid key was pressed.
 KEY_ERR_TIMEOUT TimeOut error.
 KEY_ERR_SMARTCARD_INSERTED SmartCard insertion detected.
 KEY_ERR_SMARTCARD_REMOVED SmartCard removal detected.
 KEY_ERR_EVENT

ScanOrder can be any permutation of the values 0,1,2,3 and 4. If an unscrambled order is
desired, set ScanOrder = 0x4688. The scrambling algorithm is handled by the caller. If the
event was a Smart Card event exit, use ICC_Status() to discover which card caused the exit.

4.2.2 LCD Driver API – Available with all 73S12xxF Devices
The LCD interface supports a generic external LCD controller and uses USR I/O that is accessed by the
LCD driver API. The LCD calls manage a generic 7-bit (4-bit data bus) interface to the external LCD
controller. For the 73S1215F Evaluation Board, where the MDL-16265 LCD is used, USR pins 0-3 are
used for the 4-bit data bus, USR pins 4, 5 and 6 are used for E, RW and RS, respectively).

The USR IO pins can be used for several different features such as LCD, I2C addressing for external
slots and a Serial RS232 interface to a Windows XP host depending on the TSC evaluation board and
the application firmware being used. Care must be taken by the application to make sure there is no
conflicting usage. The LCD API includes:

• LCD_Init () (page 23)
• LCD_Command () (page 24)
• LCD_Data_Write () (page 24)
• LCD_Data_Read () (page 24)

LCD_Init ()

Purpose Initialize the LCD interface. After initialization the Display will be ON and cleared. A
block cursor will be at the home position.

Synopsis Void LCD_Init (void);

Parameters None.

Return Codes None.

73S12xxF Software User Guide UG_12xxF_016

24 Rev. 1.50

LCD_Command ()
Purpose Send command to LCD.

Synopsis Void LCD_Command (IN char LcdCmd);

Parameters LcdCmd: Input parameter

8-bit command to control the LCD. Available commands are:
LCD_CLEAR Clear display and return cursor to home.
LCD_HOME Return display and cursor to home
position.
LCD_MODE | LCD_INC Increment cursor on read/write of display.
LCD_MODE | LCD_INC|LCD_SHIFT Increment cursor and shift display on

read/write of display.
LCD_CTRL | LCD_DON | LCD_CON Display ON and cursor ON (visible).
LCD_CTRL | LCD_DON Display ON and cursor OFF (invisible).
LCD_CTRL | LCD_BON Display ON and blinking ON.
LCD_CURSOR Shift cursor left.
LCD_CURSOR | LCD_RL Shift cursor right.
LCD_CURSOR | LCD_SC Shift display left.

Return Codes None.

LCD_Data_Write ()
Purpose Write data to LCD.

Synopsis Void LCD_Data_Write (IN char LcdData);

Parameters LcdData : Input parameter
 8-bit data written to the LCD at the current cursor position.

Return Codes None.

LCD_Data_Read ()
Purpose Read data from the LCD.

Synopsis Void LCD_Data_Read (OUT char *LcdData);

Parameters LcdData : Output parameter

8-bit data read from the LCD at the current cursor position.

Return Codes None.

4.2.3 LED Driver API – Available with all 73S12xxF Devices
The 73S12xxF provides four LEDs that can be programmed with four levels of output current: 0 mA
(LED_OFF), 2 mA (LED_DIM), 4 mA (LED_NORMAL) and 10 mA (LED_BRIGHT). On the 73S1205F,
only LED0 and LED1 (lower two bits) are available.

The LED Driver API includes:

• LED_Config () (page 25)
• LED_Write () (page 25)
• LED_Read () (page 25)

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 25

LED_Config ()
Purpose Configure the LED interface (all pins).

Synopsis Void LED_Config (IN Bbool PU_Enable, IN enum LED_CURRENT LC);

Parameters PU_Enable: Input parameter

Boolean value specifies enable (TRUE) or disable (FALSE) pull-up.
 LC: Input parameter

Enum type indicating the output current level for the LEDs (when turned on). The
following values are available:

LED_OFF: turn off LED (0 mA).
LED_DIM: turn LED on at dim level (2 mA).
LED_NORMAL: turn LED on at normal level (4 mA).
LED_BRIGHT: turn LED on at brightest level (10 mA).

Return Codes None.

LED_Write ()

Purpose Turn LED on/off. If turned on, the brightness control is possible at one of three
levels: Dim, Normal, Bright as specified in LED_Config().

Synopsis Void LCD_ Write (IN unsigned char LED_Pin, IN unsigned char Value);

Parameters LED_Pin : Input parameter

Selected LED(s) to be turned on, where bit[n] = 1 indicates LED[n] to be written.
 Value: Input parameter

Value to be written to selected LED. Bit[n] is the value to be written to LED[n] if
LED[n] is selected to be written to.

Return Codes None.

LED_Read ()

Purpose Read current state of the LED data.

Synopsis Void LCD_Read (OUT unsigned char LEDValue);

Parameters LEDvalue: Output parameter

Bit[0] indicates the current state of LED0.
Bit[1] indicates the current state of LED1.
Bit[2] indicates the current state of LED2 – Not available in 73S1205F.
Bit[3] indicates the current state of LED3 – Not available in 73S1205F.
Bit[4] indicates the state of the pull-up (1=enable).
Bit[5,6] indicate the output current level where:

 00 = OFF
 01 = DIM
 10 = NORMAL
 11 = BRIGHT

Return Codes None.

73S12xxF Software User Guide UG_12xxF_016

26 Rev. 1.50

4.2.4 Real Time Clock API - Available with the 68-pin 73S12xxF
The 73S12xxF provides a 32-bit counter selectable in 0.5, 1 or 2 second increments to measure time. This time
mark can also be used to generate RTC interrupts at 0.5, 1, 2, 4, or 8-second intervals. A 24-bit trimming
function, along with a 24-bit accumulator, is provided to correct the clock drift induced by the quartz crystal.
The device also supports a watchdog capability. This feature will give the processor 0.5 seconds to
respond to an RTC interrupt. If the RTC interrupt is not serviced within 0.5 seconds, a full RESET to the
72S12xxF is performed. To use the watchdog timer function, the RTC interrupt must be enabled.
Consequently, the watchdog will always be enabled when the RTC interrupt is enabled. It is not possible
to turn off the watchdog while the RTC interrupt is enabled.

Care should be taken as it is possible for the device to be put into an infinite reset loop when an
RTC interrupt is not serviced on time (within 0.5 second). When this problem occurs,
reprogram the Flash with a known good application/program using the TFP.

The RTC block uses the 32768 Hz oscillator signal or divider logic (from the 12 MHz oscillator circuit) to
produce 0.5 second time marks. The 32768 Hz oscillator can be disabled (see the PowerOFF API), but
is intended to operate at all times in all power consumption modes. If a 32 kHz crystal is not provided,
this oscillator must be disabled and the RTC will operate from an internal 96 MHz clock divided by 2930.
In this case, the RTC trim value should be set as described in the following paragraph.

The 3-byte accumulator can hold 224 = 16,777,216, which yields a 0.0596 PPM resolution. Using the 12 MHz
oscillator gives 96 MHz/2930 which will generate 32,764 Hz. The core RTC uses a 32,768 Hz Oscillator crystal.
This yields a 106 PPM error. Therefore, the trim value = (106 PPM) / (.0596 PPM) ~= 1778 (0x06F2).

When the accumulator reaches overflow, it will advance the counter one additional count if the trim value
is positive, or prevent the counter from advancing one count if the trim value is negative.

The trim value can be set in the API_12.h file. RTClk_Init () must be called prior to using any of the RTC
APIs. Once the RTC is initialized, the 32 kHz OSC clock will always be running. To turn it off, use the
PowerOFF (DISABLE_RTC) API.

The Real Time Clock API is described in detail below and includes:

• RTClk_Init () (page 26)
• RTCClk_Control () (page 27)
• RTClk_Write () (page 27)
• RTClk_Read () (page28)
• RTCClk_GetTIME () (page 28)
• RTCClk_SetTIME () (page 29)

RTClk_Init ()

Purpose Initialize the Real Time Clock values by setting the accumulator to 0 and setting the
trim values as defined in api_12.h. The default base day is defined as 12:00:00,
01/01/2005 calculated using the Gregorian/Julian conversion defined in:
http://webexhibits.org/calendars/calendar-christian.html.

When this function is called, the RTC is stopped and restarted. The RTC counter,
trim and accumulator will be loaded at the next 32 kHz clock positive edge. The RTC
interrupt is NOT set here. Use RTClk_Control() to set the interrupt. The RTC
counter continues to count whether the RTC interrupt is enabled or not.

The Interrupt service routine for the RTC interrupt can be masked using the Set_Event (eRTC,
pRTCVector) API. If customization of the RTC ISR is desirable, call Set_Event after this API is
called. See Set_Event() for its usage description.

http://webexhibits.org/calendars/calendar-christian.html�

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 27

Synopsis Void RTClk_Init (void);

Parameters None.

Return Codes None.

RTCClk_Control ()
Purpose Enable or disable the RTC interrupt. If enabled, the interrupt interval must be

specified.

Synopsis RTCClk_Control (IN Bbool RTCInt_Enb, IN enum RTC_INTERVAL intv);

Parameters RTCInt_Enb: Input parameter
Enable (TRUE) or disable (FALSE) the RTC interrupt. If set to Enable when the intv
parameter is set to NO_INT, the RTC interrupt will NOT be enabled.

 Intv: Input parameter
The RTC interrupt interval as defined in API_STRUCT_12.h as follows:

HALF_SEC Interrupt to occur every ½ second.
ONE_SEC Interrupt to occur every 1 second (default).
TWO_SEC Interrupt to occur every 2 seconds.
FOUR_SEC Interrupt to occur every 4 seconds.
EIGHT_SEC Interrupt to occur every 8 seconds.
NO_INT No interrupt.

Return Codes None.

The watchdog timer will give the processor ½ second to respond to an RTC interrupt. If the RTC
interrupt is not serviced within this timeframe, a full reset will be performed.

RTClk_Write ()
Purpose Initialize the Real Time Clock control, counter, accumulator and trim registers. When

this function is called, the RTC is stopped and restarted.

Synopsis Void RTClk_Write (IN struct RTC_t *pRTC);
 Where RTC_t is defined as:

 struct RTC_t
 {
 Unsigned char RTCCtl;
 Unsigned long RTCCnt;
 Unsigned char RTCAcc[3];
 Signed char RTCTrim[3];
 }

Parameters RTCCtl: Input parameter
BIT[7-6]: not used
BIT[5]: RTCLoad – when set, RTCCnt, RTCAcc and RTCTrim are loaded at the next

32kHz clock positive edge.
BIT[4-3]: Set tic interval as follows:
 0x – 1 second
 10 – ½ second
 11 – 2 seconds
BIT[2-0]: Set interrupt interval as follows:
 100 – ½ second
 0xx – 1 second
 101 – 2 seconds
 110 – 4 seconds
 111 – 8 seconds

73S12xxF Software User Guide UG_12xxF_016

28 Rev. 1.50

 RTCCnt: Input parameter
32-bit RTC counter value.

 RTCAcc[3]: Input parameter
24-bit accumulator value. Normally these values are to be initialized only once
during the manufacturing phase.

 RTCTrim[3]: Input parameter
24-bit signed trimmer value. This is the offset value used to correct the quartz crystal
drift. It is the number of ticks between each correction of the Real Time Clock. Use
a negative numbers to decrease the tic-count by one and a positive number to
increase the tick-count by 1.

Return Codes None.

The RTC can be enabled and disabled via the PowerON() and PowerOFF() or RTCClk_Control ()
functions. The new values will not be loaded until the RTCLoad bit (bit 5) of the RTCCtl register
is set (HI).

RTClk_Read ()

Purpose Extract the current Real Time Clock control, counter, accumulator, and trimmer values.

Synopsis Void RTClk_Read (IN struct RTC_t *pRTC);
 struct RTC_t
 {
 Unsigned char RTCCtl;
 Unsigned long RTCCnt;
 Unsigned char RTCAcc[3];
 Signed char RTCTrim[3];
 }

Parameters RTCCtl: Output parameter

Current Real Time Clock Control register value (setting).
 RTCCnt: Output parameter

Current Real Time Clock Counter value.
 RTCAcc[3]: Output parameter

Current Real Time Clock accumulator value.
 RTCTrim[3]: Output parameter

Current Real Time Clock Trimmer value.

Return Codes None.

RTCClk_GetTIME ()
Purpose Extract current calendar Time. Time conversion is done by the Gregorian/Julian conversion

method as defined on website: http://webexhibits.org/calendars/calendar-christian.html.

Synopsis Void RTCClk_GetTIME (struct C_RTC_t xdata *pRTC_Time)
 struct C_RTC_t
 {
 Unsigned char Sec;
 Unsigned char Min;
 Unsigned char Hour;
 Unsigned char Date;
 enum MONTH Month;
 Unsigned integer Year;
 enum RTC_INTERVAL TicInterval; //Tic interval - 1, 1/2 or 2 sec
 enum RTC_INTERVAL IntInterval; //int interval. NO_INT=disable int.
 };

http://webexhibits.org/calendars/calendar-christian.html�

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 29

 Where MONTH is defined as: enum { JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC }; and RTC_INTERVAL is defined as:
enum {HALF_SEC, ONE_SEC, TWO_SEC, FOUR_SEC, EIGHT_SEC, NO_INT};

Parameters Sec: Output parameter

Current second unit.
 Min : Output parameter

Current minute unit.
 Hour: Output parameter

Current hour unit.
 Date: Output parameter

Current date unit.
 Month: Output parameter

Current month unit as specified in the enum MONTH type.
 Year: Output parameter

Current year unit, e.g. 2005.
 TicInterval: Output parameter

Tic interval as HALF_SEC, ONE_SEC or TWO_SEC, defined in RTC_INTERVAL.
 IntInterval: Output parameter

Interrupt interval as defined in RTC_INTERVAL.

Return Codes None.

RTCClk_SetTIME ()
Purpose Set time and start clocking immediately. Time conversion is done by the Gregorian/Julian

conversion method as defined on website: http://webexhibits.org/calendars/calendar-
christian.html.

Synopsis Bbool RTCClk_SetTIME (struct C_RTC_t xdata *RTC_Time)
 struct C_RTC_t
 {
 Unsigned char Sec;
 Unsigned char Min;
 Unsigned char Hour;
 Unsigned char Date;
 enum MONTH Month;
 Unsigned integer Year;
 enum RTC_INTERVAL TicInterval; //Tic interval - 1, 1/2 or 2 sec
 enum RTC_INTERVAL IntInterval; //int interval. NO_INT=disable int.
 };
 Where MONTH is defined as: enum { JAN=1, FEB, MAR, APR, MAY, JUN, JUL,

AUG, SEP, OCT, NOV, DEC }; and RTC_INTERVAL is defined as: enum
{HALF_SEC, ONE_SEC, TWO_SEC, FOUR_SEC, EIGHT_SEC, NO_INT };

Parameters Sec: Input parameter

Current second unit.
 Min: Input parameter

Current minute unit.
 Hour: Input parameter

Current hour unit.
 Date: Input parameter

Current Date unit.
 Month: Input parameter

Current month unit as specified in the enum MONTH type.

http://webexhibits.org/calendars/calendar-christian.html�
http://webexhibits.org/calendars/calendar-christian.html�

73S12xxF Software User Guide UG_12xxF_016

30 Rev. 1.50

 Year: Input parameter
Current year unit, e.g. 2005.

 TicInterval: Input parameter
Tic interval as HALF_SEC, ONE_SEC or TWO_SEC, defined in RTC_INTERVAL.

 IntInterval: Input parameter
Interrupt interval as defined in RTC_INTERVAL.

Return Codes TRUE if success. FALSE if TicInterval or Interrupt Interval value is invalid.

4.2.5 Smart Card Interface Driver API – Available with all 73S12xxF Devices
The Smart Card Interface Driver API manages all the Smart Card interfaces. Each of the smart card slots
can be individually activated, deactivated, etc. since most of the functions take the ICC identifier as an
input. This API handles the physical layer, i.e., the inter-character and inter-block timeouts. Optionally, it
can handle the LRC/CRC computation.

To switch between multiple activated cards, re-initialize the selected card (using the eIccId parameter).
ICC_1ST refers to the internal Smart Card #1. ICC_2ND or higher refers to external slot #2 with I2C
interface (8010 interface) and uses USRIO as its associated address.

When developing an application with an internal interface only (1 slot only), include libraries LAPI.LIB and
Internal-SC.LIB. When developing an application with interface to an internal interface and/or external
slot(s), include libraries LAPI.LIB and I2C-SC.LIB (replace Internal-SC.lib with I2C-SC.LIB).

For an external I2C interface, it is necessary to assign the I2C address, and I2C Card Event signal as
specified by the board design (see ICC_InitUART() for more details).

The Smart Card Interface API includes:

• ICC_InitUART() (page 31)
• ICC_Activate() (page 34)
• ICC_Status() (page 35)
• ICC_Tx() (page 36)
• ICC_Rx() (page 37)
• ICC_RxLen() (page 38)
• ICC_RxDone() (page 38)
• ICC_Deactivate() (page 38)
• ICC_Mode() (page 38)
• ICC_Clk_Restart() (page 39)
• ICC_Clk_Stop() (page 39)

Follow the general procedure described below to communicate with any asynchronous ICCs present:

1. Initialize the Smart Card UART parameters for each selected card.
2. Activate the card(s) that were initialized in Step 1.
3. Re-initialize the Smart Card UART parameters for each card, based on ATR analysis.
4. Negotiate the protocol and/or Fi/Di values for the selected cards. (Optional)
5. Update the Smart Card parameters based on the protocol negotiation if performed.
6. Re-initialize the selected card.
7. Transmit requests to a selected card via ICC_Tx call(s).
8. Receive responses from a selected card via ICC_Rx call(s).
9. Repeat Steps 6, 7 and 8 as needed for any activated card.
10. Deactivate active card(s).

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 31

Figure 8: Smart Card Rx/Tx Timing

ICC_InitUART()

Purpose Initializes the Smart Card UART for the specified ICC.

Synopsis Void ICC_InitUART (IN struct ICC_Init_t *pICC_Init);
 Struct {
 enum ICC_ID IccId,
 Boolean IccDetect,
 enum ICC_HZ IccHz,
 unsigned char FiDi,
 Boolean IccProtocol,
 Boolean IccEDCEnabled,
 Boolean IccEDCTypeCRC,
 Boolean IccParityCheck,
 Boolean IccBreakGeneration,
 unsigned char IccBreakStartPosition,
 unsigned char IccBreakDuration,
 unsigned char IccRxRetry,
 Boolean IccBreakDetect,
 unsigned char IccTxRetry,

TX

EGT < t

TX/RX

BGT < t < BWT (T=1) or WWT (T=0)

RX/TX

t < CWT (T=1) or WWT (T=0)

RX

73S12xxF Software User Guide UG_12xxF_016

32 Rev. 1.50

 int IccExtraGuardTime,
 int IccBlockGuardTime,
 int IccCharWaitingTime,
 long int IccBlockWaitingTime,
 long int IccWorkWaitingTime
 Boolean IccPUEnabled; Boolean IccPDEnabled;
 Boolean IccVDDFaultOff;.
 enum ICC_ADDR IccAddr; // Useful for external I2C.
 enum ICC_RESET IccExtRst; // Useful for external I2C.
 enum ICC_CARDEVENT IccCE; // Useful for external I2C.
 } ICC_Init_t;

Parameters IccId: Input parameter

Specifies which SmartCard UART interface is to be initialized. Possible values are:
ICC_1ST 0 (Internal)
ICC_2ND 1 (External)
…
ICC_9TH 8 (External)

 IccDetect: Input parameter
Specifies the detect polarity of the card present. Specify TRUE to detect a card
present when the DET_CARDx pin is HIGH. Specify FALSE to detect a card with
the DET_CARDx pin is LOW. This parameter is only valid for the internal ICC
interface.

 IccHz: Input parameter
Specifies the smart card frequency. Possible values are:

 ICC_3600KHZ (0)
 ICC_1800KHZ (1)
 ICC_7200KHZ (2)

 The LAPI supports these three rates to follow the same design as the older device

family (73S11xx). The 73S12xxF hardware supports a wider range of smart card
clock generations, which can be derived using a dividing factor (F) such that:
SC clock = 96 MHz / (F + 1) / 2 where F can be any value used to generate the
desired clock. In the three cases above, the F values were defined as: 12, 24 and 6
respectively. See the data sheet for more information.

 FiDi: Input parameter
Specifies the current Fi/Di values, equivalent in format to the PPS1 byte of a PPS
request.

 IccProtocolT1: Input parameter
Specifies the current protocol, T=1 (TRUE) or T=0 (FALSE). Used to set appropriate
guard and wait times.

 IccEDCEnabled: Input parameter
Specifies if the EDC byte(s) are to be updated on the fly.

 IccEDCTypeCRC: Input parameter
Specifies if the EDC value is to be calculated with the CRC algorithm (TRUE) or with
the LRC algorithm (FALSE).

 IccParityCheck: Input parameter
Specifies if the parity bit is to be checked (TRUE) or not (FALSE).

 IccBreakGeneration: Input parameter
Specifies whether the UART must generate a break on a parity error (TRUE) or not
(FALSE).

 IccBreakStartPosition: Input parameter
Specifies where the break signal should start. Possible values are 0x00 through 0x07 (in
0.125 ETU increments), which are associated with bit positions 10 through 10.875 ETUs.
For example, 1 corresponds to 10.125 ETUs. The default value is 0x04 (10.5 ETUs).

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 33

 IccBreakDuration: Input parameter
Specifies the break signal duration. Possible values are 0x00 (1 ETU), 0x01 (1.5
ETU) and 0x02 (2 ETU). The default value is 0x00 (1 ETU).

 IccRxRetry: Input parameter
The number of retries to allow on reception of a bad byte. Retries = total tries – 1.

 IccBreakDetect: Input parameter
Specifies whether to acknowledge (TRUE) or ignore (FALSE) a break coming from
the Smart Card.

 IccTxRetry: Input parameter
The number of retries to allow on transmission of a bad byte. Retries = total tries – 1.

 IccExtraGuardTime: Input parameter
Specifies the minimum delay in ETUs between the leading edges of two consecutive
characters sent to the Smart Card.

 IccBlockGuardTime: Input parameter
Specifies the minimum delay in ETUs between the leading edges of two consecutive
characters sent in opposite directions.

 IccCharWaitingTime: Input parameter
Specifies the maximum delay in ETUs between the leading edges of two consecutive
characters from the smart card (T=1 protocol).

 IccBlockWaitingTime: Input parameter
Specifies the maximum delay in ETUs between the leading edges of two consecutive
characters sent in opposite directions. Possible values are in the range 0x01
through 0x078000.

 IccWorkWaitingTime: Input parameter
Specifies the maximum delay in ETUs between the leading edges of two consecutive
characters from the Smart Card or of one sent to the Smart Card and the next one
received from it (T=0 protocol).

 IccPUEnabled: Input parameter
Enables (TRUE) or disables (FALSE) the Smart Card pull-up current source on the
Card Detect pin.

 IccPDEnabled: Input parameter
Enables (TRUE) or disables (FALSE) the Smart Card pull-down current source on
the Card Detect pin.

 IccVDDFaultOff: Input parameter
When enabled (1), allows the 73S12xxF to automatically perform a deactivation
sequence when there is a VDD Fault. When disabled (0), allows the 73S12xxF to
signal the companion circuit to set its VCC=0 when there is a VDD Fault.

 IccAddr: Input parameter
The following settings are defined in API_STRUCT_12.h

ICC_INTERNAL – Use this value for slot #1 (Internal slot)
ICC_I2C_0 = 0x40, – Any of these values can be used for I2C, slot # > ICC_1ST
ICC_I2C_1 = 0x42,
ICC_I2C_2 = 0x44,
ICC_I2C_3 = 0x46,
ICC_I2C_4 = 0x48,
ICC_I2C_5 = 0x4A,
ICC_I2C_6 = 0x4C,
ICC_I2C_7 = 0x4E

 IccExtRst: Input parameter
External Reset signal. The following settings are defined in API_STRUCT_12.h:

ICC_NRST = 0x00, – Use this value for slot #1 (Internal slot)
ICC_RST0 = 0x80,
ICC_RST1 = 0x90,
ICC_RST2 = 0xA0,

73S12xxF Software User Guide UG_12xxF_016

34 Rev. 1.50

ICC_RST3 = 0xB0,
ICC_RST4 = 0xC0,
ICC_RST5 = 0xD0,
ICC_RST6 = 0xE0,
ICC_RST7 = 0xF0

 IccCE: Input parameter
Card Event parameter. The following settings are available as defined in
API_STRUCT_12.h. Set this variable according to the hardware design where either
interrupt 2 or interrupt 3 is used for an external card event detect.

ICC_INT2_NONE = 0x00,
ICC_INT2_I2C = 0x01, //Use INT2 for card event detection
ICC_INT3_I2C = 0x02, //Use INT3 for card event detection

Return Codes None.

The T=0 and T=1 protocols affect which guard and wait times to use. For protocols other than these, use
whichever protocol (either T=0 or T=1) best matches the timing requirements. If neither protocol
matches, then the application will need to bypass the Smart Card UART.

ICC_Activate()

Purpose Activate the contacts of the selected Smart Card, as specified by eIccId. The VCC,
RST, I/O and CLK signals are configured according to the ISO 7816-3 standard.

Synopsis ICC_RC ICC_Activate (IN struct ICC_Activate_t *pActivate, IN struct ICC_t *pATR

);
 Struct {
 enum ICC_VOLTAGE IccVCC;
 Unsigned char IccVCCOffDelay; // # of etus delay before VCC should go off.
 Unsigned char IccVCCTmr; // # of etus to wait for VCC stable.
 unsigned char IccResetDelay,
 int IccInitialWaitingTime,
 Boolean IccATR_TimeoutEnabled,
 int IccATR_Timeout,
 int IccTS_Timeout
 } ICC_Activate_t;

Where ICC_VOLTAGE is defined as:
VCC_0V = 0,
VCC_1V8 = 1,
VCC_3V = 2,
VCC_5V = 3

Parameters IccVcc: Input parameter

Voltage to apply when powering up this card.
 IccVCCOffDelay: Input parameter

Number of ETUs to delay before shutting off the VCC. The default should be set to
3 ETUs. The maximum value is 15.

 IccVCCTmr: Input parameter
Number of ETUs to wait for VCC to become stable. This time is calculated as:
timer * 30.5 µs using a 32768 Hz clock. A value of 0 will result in no timeout (as
opposed to zero time). The maximum value is 15.

 IccResetDelay: Input parameter
Specifies the number of ETUs to keep RESET asserted after power has stabilized.

 IccInitialWaitingTime: Input parameter
Specifies the maximum delay in ETUs between the leading edges of two
consecutive characters of the ATR response.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 35

 IccATR_TimeoutEnabled: Input parameter
Specifies if the ATR timeout is enabled (TRUE) or disabled (FALSE).

 IccATR_Timeout: Input parameter
Specifies the maximum delay in ETUs between the leading edge of the first character
and last character of the ATR response, if enabled.

 IccTS_Timeout: Input parameter
Specifies the maximum delay in ETUs between the de-assertion of the RST signal
and the leading edge of the TS byte of the ATR.

 pIccATR: Input parameter.
Pointer to the ICC_Rx_t structure.

Return Codes

ICC_OK
The SmartCard is present and active.

ICC_ACTIVATION_INCOMPLETE
The SmartCard is present, but its reset is still asserted.

ICC_ERR_OVERCURRENT or ICC_ERR_VCC_UNSTABLE
An attempt to activate the SmartCard caused an over current condition and it
has been deactivated.

ICC_ERR_REMOVED
The SmartCard is not present.

ICC_ERR_TIMEOUT
One of the maximum delays was exceeded forcing a timeout. Take appropriate
action.

ICC_ERR_BREAK
Data was always received with parity error, necessitating break signaling of the
Smart Card (T=0 protocol).

ICC_ERR_PARITY
A byte was received with an invalid parity.

ICC_RX_PENDING
Reception has started, but is not yet completed. This code is returned on either
a successful completion or a termination due to error.

ICC_RX_OVERRUN
An Rx overrun condition has occurred, resulting in the loss of at least one byte.

If the Smart Card was powered-down on entry, this function will perform a cold-reset.
If the Smart Card was powered-up on entry, this function will perform a warm-reset.
This function will return after reception of the TS byte or an error condition.

The ICC_t structure should be set up to expect the largest possible ATR response. Call ICC_RxLen() to
determine the current total number of bytes received. Call ICC_RxDone() to complete ATR reception.
(Refer to ICC_Tx() or ICC_Rx() for the ICC_t structure definition)

ICC_Status()

Purpose Retrieve the presence and active status of all the Smart Cards.

Synopsis void ICC_Status (OUT int *pnIccPresent, OUT int *pnIccActive);

Parameters pnIccPresent: Output parameter

Specifies which SmartCards are present, Bit[n] corresponding to ICC[n], Bit[1] being
mapped to the least significant bit.

 PnIccActive: Output parameter
Specifies which SmartCards are active, Bit[n] corresponding to ICC[n].

Return Codes None.

73S12xxF Software User Guide UG_12xxF_016

36 Rev. 1.50

ICC_Tx()
Purpose Send data to the selected Smart Card. Before calling this function, the Smart Card

UART must have been initialized and the selected Smart Card activated.

Synopsis ICC_RC ICC_Tx (INOUT struct ICC_t *pICC);
 struct {
 IN char *IccData,
 INOUT unsigned int IccLen,
 IN Boolean IccLastByte,
 INOUT int IccEDC,
 OUT ICC_RC ICC_Status,
 OUT Boolean IccDone
 } ICC_t;

Parameters IccData: Input parameter

Contains the data to be transmitted.
 IccLen: Input / output parameter

On input, specifies the number of bytes to send. On output, specifies the number of
bytes successfully sent without errors, valid after IccDone is true.

 IccLastByte: Input parameter
Specifies if the last transmitted byte is included in this buffer.

 IccEDC: Input / output parameter
Contains the current LRC or CRC value (T=1).

 ICC_Status: Output
Contains the current status of this transmission.

 IccDone: Output
Set on completion of transmission, possibly with errors. Check ICC_Status for
status.

Return Codes

ICC_ERR_PRESENT_INACTIVE
The SmartCard is present but inactive.

ICC_ERR_NO_CARD
The Smart Card is not present.

ICC_TX_PENDING
Transmission has started, but is not yet completed. On either a successful
completion or a termination due to error, the ICC_Status will change to one of
the following:

ICC_OK
Successful operation: All of the data was successfully transmitted to the
SmartCard without parity error.

ICC_BREAK
Successful operation. All of the data was successfully sent to the SmartCard
with at most a few retries. Initially, break signaling was detected, which
necessitated at least one retransmission. (Only in T=0 protocol)

ICC_ERR_BREAK
All attempts at sending the next byte resulted in break signaling, indicating a
perceived parity error at the SmartCard end. (Only in T=0 protocol) The
SmartCard has been automatically deactivated. Check ICCTxLen to determine
how many bytes were successfully transmitted.

IccLastByte should be set when it is time to switch to reception mode and start the BGT and BWT timers
and possibly send the EDC.

The ICC_OK status will not occur until after the CRC/LRC has been sent to the SmartCard.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 37

ICC_Rx()
Purpose Receive data from the SmartCard interface. Before calling this function, the

SmartCard UART must have been initialized and the selected SmartCard activated.

Synopsis ICC_RC ICC_Rx (INOUT struct ICC_t *pICC);
 struct {
 OUT char *IccData,
 INOUT unsigned int IccLen,
 IN Boolean IccLastByte,
 INOUT Int IccEDC,
 OUT ICC_RC ICC_Status,
 OUT Boolean IccDone
 } ICC_t;

Parameters IccData: Output parameter

Contains the data currently received from the SmartCard.
 IccLen: Input / output parameter

On input this is the number of requested bytes. On output this is the number of
successfully received bytes, valid after bIccDone is true.

 IccLastByte: Input parameter
Specifies if the last byte has been received after getting these IccLen bytes.

 IccEDC: Input / output parameter
Contains the current LRC or CRC value (T=1).

 Icc_Status: Output
Contains the current status of this reception.

 IccDone: Output
Set on completion of reception, possibly with errors. Check Icc_Status for status.

Return Codes

ICC_ERR_PRESENT_INACTIVE
The SmartCard is present, but inactive.

ICC_ERR_NO_CARD
The SmartCard is not present.

ICC_RX_PENDING
Reception has started, but is not yet completed. On either a successful
completion or a termination due to error, the ICC_Status will change to one of
the following:

ICC_OK
Successful operation, IccLen bytes have been received from the SmartCard.

ICC_BREAK
Successful operation, IccLen bytes have been received from the SmartCard, but
some bytes were initially received with parity error, necessitating some break
signaling of the SmartCard, forcing it to retransmit at least once (T=0).

ICC_ERR_BREAK
Data was always received with parity error, necessitating break signaling of the
SmartCard (T=0). The SmartCard has been automatically deactivated. Check
ICC_RxLen() to determine how many bytes were successfully received.

ICC_ERR_TIMEOUT
A byte was not received before the maximum delay specified by
nIccWorkWaitingTime (T=0) or nIccCharWaitingTime (T=1) expired.

ICC_ERR_PARITY
A byte was received with an invalid parity.

ICC_ERR_OVERRUN
An RX overrun condition has occurred, resulting in the loss of at least one byte.

73S12xxF Software User Guide UG_12xxF_016

38 Rev. 1.50

IccLastByte should be set when it is time to switch to transmission mode and start the BGT timer. If it is not
immediately known when it is time to switch, call ICC_RxDone() after all the bytes have been received.

To determine if all the expected bytes have been received, call ICC_RxLen(). Since the ICC_OK or
ICC_BREAK status occurs after reception of ICCLen bytes, this value should include any CRC/LRC
byte(s) received.

ICC_RxLen()

Purpose Return the number of bytes received thus far.

Synopsis unsigned Int ICC_RxLen (void);

Parameters None.

Return Codes None.

ICC_RxDone()
Purpose Notify the SmartCard UART that all the expected bytes have been received. This

forces the switch to activation of block guard and wait times.

Synopsis Void ICC_RxDone (void);

Parameters None.

Return Codes None.

ICC_Deactivate()
Purpose Deactivate the contacts of the selected SmartCard interface as specified by IccId.

The Vcc, RST, I/O and Clk signals are configured according to the ISO 7816-3
standard. This function uses the IccVCCOffDelay, as described in ICC_Activate()
before turning VCC off.

Synopsis void ICC_Deactivate (void);

Parameters None.

Return Codes None.

ICC_Mode()
Purpose Enable or Disable PC (via DIRECT mode) or Application (via Bypass mode) to

directly control ICC I/O line.

Synopsis ICC_RC ICC_Mode (
 IN enum ICC_ID Iccid,
 IN Boolean bEnable,
 IN Boolean bPC_DIRECT)

Parameters IccId : Input parameter

Specifies which SmartCard to allow direct access to I/O. Possible values are:
ICC_1ST 0, (Internal)
ICC_2ND 1, (External)
…
ICC_9TH 8 (External).

 bEnable: Input parameter
If TRUE, it enables the selected mode.

 bPC_DIRECT: Input parameter
Enables or disables PC_DIRECT mode (if TRUE) or BYPASS mode (if FALSE).

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 39

Return Codes
ICC_OK The SmartCard is present and active.
ICC_ERR_PRESENT_INACTIVE The SmartCard is present but inactive.
ICC_ERR_NO_CARD The SmartCard is not present.

This API is part of the support for Synchronous cards.

ICC_Clk_Restart()

Purpose Restarts an ICC’s clock.

Synopsis ICC_Clk_Restart (IN int nIccDelayIO);

Parameters nIccDelayIO: Input parameter

Delay in clock cycles after restart of the clock before allowing I/O.

Return Codes

ICC_OK Successful operation. IccLen bytes have been received from the SmartCard.
ICC_ERR_PRESENT_INACTIVE The SmartCard is present but inactive.
ICC_ERR_REMOVED The SmartCard is removed.

The hardware TIMER1 is used by this routine, making it unavailable to the application. This
approach helps support lower power consumption.

ICC_Clk_Stop()

Purpose Stops an ICC’s clock.

Synopsis ICC_RC ICC_Clk_Stop (IN Boolean bIccClkStop, IN int nIccDelayStop);

Parameters bIccClkStop: Input parameter

Specifies whether to stop the IccClk when HIGH (TRUE) or when LOW (FALSE).
 nIccDelayStop: Input parameter

Delay in clock cycles before stopping clock.

Return Codes ICC_OK Successful operation.
 ICC_ERR_PRESENT The SmartCard is present but inactive.
 ICC_ERR_REMOVED The SmartCard is removed

The hardware TIMER1 is used by this routine, making it unavailable to the application. This
approach helps support lower power consumption.

4.2.6 SERIAL (RS232) Driver API – Available with all 73S12xxF Devices
The Serial Driver API manages the RS232 interface (Serial Channel 0). It may be used to communicate
through the UART with any host that supports an RS232 interface. The API includes:

• Serial_Init() (page 40)
• Serial_Tx() (page 40)
• Serial_CTx() (page 41)
• Serial_TxLen() (page 41)
• Serial_TxByte () (page 41)
• Serial_Rx() (page 41)
• Serial_CRx() (page 42)
• Serial_RxLen() (page 42)
• Serial_RxByte () (page 42)

73S12xxF Software User Guide UG_12xxF_016

40 Rev. 1.50

After calling Serial_Init() and prior to receiving data from the RS232 interface, Serial_Rx() and Serial_Tx()
must be called to pass on the receive/transmit buffer pointer, which is used to store Rx and Tx characters,
respectively. For a sample of the Serial API usage, see the Pseudo-CCID application source code.

Serial_Init()

Purpose Configure the communication speed, flow control, character parity and number of
stop bits. The serial interrupt service routine is NOT maskable, the interrupt vector is
set internally, so using Set_Event (eSerial, ...) will not have any effect. The baud
rates listed below are available for specific CPU clock speeds only. Review the
API_Struct_12.h for more information.

Synopsis Bbool Serial_Init (
 IN enum SERIAL_SPD speed,
 IN Boolean parity_en,
 IN Boolean parity,
 IN Boolean two_stop_bits,
 IN Boolean xon_xoff)

Parameters Speed: Input parameter

This selects the communication speed. Possible values are:
_RATE_600, 0
_RATE_1200, 1
_RATE_2400, 2
_RATE_4800, 3
_RATE_9600, 4
_RATE_14400, 5
_RATE_19200, 6
_RATE_28800, 7
_RATE_38400, 8
_RATE_57600, 9
_RATE_115200, 10
_RATE_125000, 11
_RATE_250000, 12
_RATE_375000 13

 Parity_enb: Input parameter
Specifies if the exchanged characters contain a parity bit (TRUE) or not (FALSE).

 parity: Input parameter
Specifies if the characters parity bits must be odd (TRUE) or even (FALSE).

 Two_stop_bits: Input parameter
Specifies if the exchanged characters contain two stop bits (TRUE) or one (FALSE).

 xon_xoff: Input parameter
Specifies if Xon_Xoff control is on (TRUE) or off (FALSE).

Return Codes None.

The lower speeds help support Plug & Play.

Serial_Tx()

Purpose Setup the Tx buffer before sending data to the PC UART. An application should call
this API immediately after calling Serial_Init().

Synopsis enum SERIAL_RC data *Serial_Tx (U08x xdata *buffer, U16 len)

Parameters buffer: Input parameter

Specifies a pointer to the data buffer containing data to send to the PC UART.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 41

 Len: Input parameter.
Specifies the current number of bytes to be sent.

Return Codes S_EMPTY Successful transmission.
 S_PENDING, Successful transmission thus far but not yet finished.
 Where return code SERIAL_RC is defined as: Enum SERIAL_RC.

Serial_CTx()
Purpose Put bytes into the transmit buffer and start sending. Prior to calling this function,

Serial_Tx() must be call to setup the Tx buffer.

Synopsis Unsigned Integer Serial_CTx (U08x xdata *buffer, U16 len)

Parameters buffer: Input parameter

Specifies a pointer to the data buffer containing the data to send to the PC UART.
 len: Input parameter.

Specifies the current number of bytes to be sent.

Return Value Unsigned integer specifying the number of bytes sent thus far.

After calling this API, an application can make sure all bytes were transmitted by checking that
Serial_TxLen() returns a 0.

Serial_TxLen()
Purpose Number of bytes transmitted thus far.

Synopsis Unsigned integer Serial_ TxLen (void)

Parameters none.

Return Value Unsigned integer specifying the number of bytes left in the Tx buffer, i.e. the

remaining bytes to be sent.

Serial_TxByte ()
Purpose Send a quick byte out.

Synopsis void Serial_TxByte (U08 cbyte)

Parameters cbyte: Input parameter

Byte to put at the end of the Tx buffer to be sent out quickly.

Return Codes none.

This function performs similarly to Serial_CTx() (U08 &cbyte, 1) but it has much less overhead. Use this
API when performance optimization is required yet only one byte can be sent at a time.

Serial_Rx()
Purpose Setup receive buffer and start receiving. Always call this function after Serial_Init() to

make sure the receive buffer is available.

Synopsis enum SERIAL_RC data *Serial_Rx (U08x xdata *buffer, U16 len)

Parameters buffer: Input parameter

Specifies a pointer to the data buffer to store the data received from the PC UART.

73S12xxF Software User Guide UG_12xxF_016

42 Rev. 1.50

 len: Input parameter.
Specifies the maximum number of bytes to receive at any one time.

Return Codes On a successful completion or termination, the serial Status will return one of the following:
S_EMPTY Reception has started but the receive buffer is still empty.
S_PENDING Reception has started, but is not yet completed.
S_FULL Reception has started and the buffer is now full.
S_PARITY_ERR Parity error occurred on the received byte(s).
S_OVERRUN Buffer overrun, which may result in a loss of at least 1 byte.

Serial_CRx()
Purpose Get additional bytes from the receiving buffer.

Synopsis Unsigned Integer Serial_CRx (U08x xdata *buffer, U16 len)

Parameters buffer: Input parameter

Specifies a pointer to the data buffer to store the data received from the PC UART.
 len: Input parameter.

Specifies the maximum number of bytes to receive at any one time.

Return Value Upon completion, returns the number of bytes received thus far.

Serial_RxLen()
Purpose Number of bytes received thus far.

Synopsis Unsigned Integer Serial_ RxLen (void)

Parameters None.

Return Value Unsigned integer specifying the number of bytes received thus far.

Serial_RxByte ()
Purpose Get a quick byte out of the input buffer.

Synopsis Unsigned Char Serial_RxByte (void)

Parameters None.

Return Value Byte received from the serial interface.

This function performs similarly as Serial_CRx (U08 &cbyte, 1) but has much less overhead. Use this
API when performance optimization is required yet only one byte can be read at a time.

4.2.7 USB API – Available with 64K Flash version of the 73S12xxF
This API manages the USB interface which is compatible with the USB Specifications 2.0 – Full
Speed/12Mbps. The USB protocol Suspend, Resume and Reset operations are managed by this API.
The API includes:

• USB_Init() (page 43)
• USB_Status() (page 48)
• USB_Stall() (page 49)
• USB_UnStall() (page 49)
• USB_IN_1() (page 49)
• USB_IN_2() (page 50)
• USB_OUT_1() (page 50)

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 43

The USB interface contains four endpoints, which are defined as follows:

1. Endpoint 0 for the control transfer
2. Endpoint 1 IN for the Bulk transfer
3. Endpoint 1 OUT for the Bulk transfer
4. Endpoint 2 IN for the interrupt transfer

The Low-level API handles all Endpoint 0 (control endpoint) communications; thus PC driver enumeration
takes place during the device reset time and is transparent to an application. An application can be
written to monitor this reset signal to determine when it can start sending Endpoint 1 IN and/or Endpoint
2 IN packets to the host or to expect Endpoint 1 OUT packets from the host. (References to
transmission direction (IN/OUT) are relative to the host.)

USB_Init()

Purpose Configure the USB interface during the reset procedure. The descriptors (device,
configuration, endpoint, interface and string) used in future enumeration requests are
configured. When leaving this function, the USB interface is ready to answer any
enumeration request.

Synopsis Void USB_Init (
 IN struct USB_Init_t *pUSB,
 IN struct USB_LangID_t *pLangID,
 IN void (*pRESET) (),
 IN void (*pSUSPEND) (),
 IN void (*pRESUME) ());

 struct USB_Init_t
 {
 struct USB_Device_t Device;
 struct USB_Config_t Config;
 struct USB_CCID_t CCID;
 struct USB_Strings_t Strings;
 };
 The Device, Config, CCID, Strings and LangID structures are described at the end of

this function description.

Parameters pUSB: Input parameter

Specifies the Device, Configuration, Endpoints, Interfaces and String Descriptors
defining the USB interface.

 pLangID: Input parameter
Specifies the Language ID codes String Descriptor.

 pRESET: Input parameter
Specifies a pointer to the function to call when RESET signaling has occurred on the
USB bus.

 pSUSPEND: Input parameter
Specifies a pointer to the function to call when SUSPEND signaling has occurred on
the USB bus.

 pRESUME: Input parameter
Specifies a pointer to the function to call when RESUME signaling has occurred on
the USB bus.

Return Codes None.

This function will activate the USB interface and ALL Endpoints will be ACTIVE. Endpoint 0 gets device
descriptor requests and will return the device descriptor. Endpoint 0 gets configuration descriptor

73S12xxF Software User Guide UG_12xxF_016

44 Rev. 1.50

requests and will return the configuration, endpoint, interface and string descriptors including the CCID
class descriptor, depending on the maximum length requested.

There are two possible configurations for the USB: self-powered and bus-powered. Each configuration
requires some power consumption management to effectively reduce the power according to the USB 2.0
Specification. As a result, the following must be implemented for each configuration:

• For Self-Power: Cable attach/detach must be detectable to turn D+ on/off respectively. The CCID

USB sample code included as part of the release has implemented the use of USR7 with external
interrupt 0 (all internal to IC) so that a cable attach/detach event will be detected and serviced via the
INT0 interrupt service routine.

• For Bus-Power: D+ must be kept high at all times via the PowerON(ENABLE_USB) API. When the
host puts the device in Suspend mode, the CCID USB sample code puts the device’s CPU to sleep
to conserve power. After Suspend mode, the host wakes up the device via a Reset or a Resume
signal.

This signal (D+ being pulled low for a period of time as described in the USB 2.0 Specification) will cause
interrupt 0 to occur which will wake up the device’s CPU. The interrupt is required because the USB clock is
turned off during sleep mode, so the D+ (Reset/Resume) signal would not wake up the CPU. Upon waking
up, the INT0 interrupt service routine will turn the USB clock back on to resume its function.

In order to configure the self-powered or bus-powered mode, modify the ATTRIBUTES variable, defined
in API_12.h, to its respective value before building the application. See the CCID USB source code
project for an example.

The USB initialization descriptors and relevant structures are described below. All the descriptors are
modifiable, but some values should not change. These are flagged as “Always”.

//
// USB API.
//
/*** the total size of the configuration descriptor ***/
#define CONFIG_DESC_TOTAL_SIZE 93
/*** define the number of core endpoints (including EP0) ***/
#define NUMBER_OF_EPS 4
/*** define the total possible number of interfaces for all configurations ***/
#define NUMBER_OF_INTERFACES 1
/***
Descriptor types
***/
#define DEVICE_DESCRIPTOR 1
#define CONFIGURATION_DESCRIPTOR 2
#define STRING_DESCRIPTOR 3
#define INTERFACE_DESCRIPTOR 4
#define EP_DESCRIPTOR 5
#define CCID_DESCRIPTOR 0x21
struct USB_Device_t
{
unsigned char Length; // Always 18.
unsigned char DescriptorType; // Always DEVICE_DESCRIPTOR = 1.
unsigned int USB_spec_rev; // 0x0002 (rev 2.0).
unsigned char DeviceClass; // Always 0.
unsigned char DeviceSubclass; // Always 0.
unsigned char DeviceProtocol; // Always 0.
unsigned char MaxPacketSize0; // Always 16.
unsigned int idVendor; //Always 0xc309

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 45

unsigned int idProduct; // Always 0x0500
unsigned int Device; // 0x4600;
unsigned char iManufacturer; // 0, TBD;
unsigned char iProduct; // 0, TBD;
unsigned char iSerialNum; // 0, TBD;
unsigned char NumConfigs; // 1, TBD;
};

struct USB_Interface_t
{
unsigned char Length; // Always 9.
unsigned char DescriptorType; // Always INTERFACE_DESCRIPTOR = 4.
unsigned char InterfaceNumber; // 0.
unsigned char AlternateSetting; // 0.
unsigned char NumEndPoints; // Always NUMBER_OF_EPS - 1 = 3;
unsigned char InterfaceClass; // 0x0B.
unsigned char InterfaceSubClass; // 0.
unsigned char InterfaceProtocol; // 0.
unsigned char iInterface; // 0.
};

#define CLASS 0x0B //Always 0B for Smart Card Reader
#define SUBCLASS 0

struct USB_EP_t
{
unsigned char Length; // Always 7.
unsigned char DescriptorType; // Always EP_DESCRIPTOR = 5.
unsigned char EndpointAddress; // (IN or OUT) plus (1 or 2).
unsigned char Attributes; // BULK or INTERRUPT.
unsigned int MaxPacketSize; // 16, 32 or 64.
unsigned char Interval; // 0 for BULK. 10 for INTERRUPT.
};

#define IN 0x80
#define OUT 0x00
#define BULK 0x02
#define INTERRUPT 0x03
#define INTERVAL 10 // Interrupt EndPoint interval in frames (about 10 msec).

struct USB_Config_t
{
unsigned char Length; // Always 9.
unsigned char DescriptorType; // Always CONFIGURATION_DESCRIPTOR = 2.
unsigned char TotalLengthL; // CONFIG_DESC_TOTAL_SIZE = 93
 // (One Interface, three Endpoints).
unsigned char TotalLengthH; // Always 0.
unsigned char NumInterfaces; // NUMBER_OF_INTERFACES = 1.
unsigned char ConfigurationValue; // Always 1.
unsigned char iConfiguration; // Application specific.
unsigned char Attributes; // Application specific.
unsigned char MaxPower; // Application specific.
struct USB_Interface_t I;
};

#define ATTRIBUTES BIT7 | SELF_POWERED // application specific, self-powered

73S12xxF Software User Guide UG_12xxF_016

46 Rev. 1.50

#define SELF_POWERED BIT6
#define REMOTE_WAKEUP BIT5
#define MAXPOWER 50 // 100 mA, if bus-powered.
#define NUMBER_LANGIDS 1 // Change as needed.

#ifdef DFU
#define NUMBER_STRINGS 4 // Change as needed.
#else
#define NUMBER_STRINGS 3

struct USB_LangID_t
{
Uc Length; // (NUMBER_LANGIDS * 2) + 2.
Uc DescriptorType; // Always STRING_DESCRIPTOR = 3.
Ui LangID [NUMBER_LANGIDS]; // Array of LangID codes.
};

#define MAX_STRING_LEN 80 // Change and duplicate as needed.

struct USB_String_t
{
Uc Length; // Real STRING_LEN + 2.
Uc DescriptorType; // Always STRING_DESCRIPTOR = 3.
Uc String[MAX_STRING_LEN]; // UNICODE encoded string.
};
//Pointers to strings of a language are grouped together.

struct USB_Strings_t
{
U08 Number_Of_Strings; // Number of String descriptors per language.
 // Array of pointers to UNICODE encoded STRING descriptors.
struct USB_String_t code *Strings[NUMBER_STRINGS * NUMBER_LANGIDS];
};

// Define for any selection parameter below.
#define NONE 0x00000000L

// Defines for Voltage Support.
#define VOLTS5_0 0x01
#define VOLTS3_0 0x02
#define VOLTS1_8 0x04

// Defines for Protocols supported.
#define PROTOCOL_T_0 0x00000001L
#define PROTOCOL_T_1 0x00000002L

// Defines for Clock rates.
#define KHZ3600 3600L
#define KHZ4000 4000L
#define KHZ5050 5050L
#define KHZ6000 6000L
#define KHZ8000 8000L
#define KHZ9600 9600L
#define KHZ12000 12000L

// Defines for ICC bps.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 47

#define BPS9600 9600L // 0x00002580 (9600 +- 1%)
#define BPS14400 14400L
#define BPS19200 19200L
#define BPS28800 28800L
#define BPS38400 38400L
#define BPS57600 57600L
#define BPS57688 57688L
#define BPS115200 115200L // 0x0001C200 (115200 +- 1%)
#define BPS116129 116129L // 0x0001C200
#define BPS225000 225000L
#define BPS230400 230400L

// Defines for Mechanical.
#define ACCEPT 0x00000001L
#define EJECT 0x00000002L
#define CAPTURE 0x00000004L
#define LOCK 0x00000008L

// Defines for Features.
#define ATR_CONFIGURATION 0x00000002L
#define INSERT_ACTIVATION 0x00000004L
#define VOLTAGE_SELECTION 0x00000008L
#define CLOCK_FREQ_CHANGE 0x00000010L
#define BIT_RATE_CHANGE 0x00000020L
#define AUTO_NEGOTIATION 0x00000040L
#define AUTO_PPS 0x00000080L
#define CLOCK_STOP 0x00000100L
#define NAD_NOT_NULL 0x00000200L
#define AUTO_IFSD 0x00000400L
#define TPDU 0x00010000L
#define SHORT_APDU 0x00020000L
#define EXTENDED_APDU 0x00040000L

// Defines for LcdLayout
#define NO_LCD 0x0000
#define LCD_ROWS 0xFF00
#define LCD_COLS 0x00FF

// Defines for PinSupport.
#define NO_PIN 0x00
#define VERIFY 0x01
#define MODIFY 0x02

struct USB_CCID_t
{
unsigned char Length; // Always 54 (0x36).
unsigned char DescriptorType; // Always CCID_DESCRIPTOR = 0x21
unsigned int CCID; // 0x0100 CCID version number.
unsigned char MaxSlotIndex; // Application specific.
unsigned char VoltageSupport; // Application specific.
unsigned long Protocols; // Application specific.
unsigned long DefaultClock; // 3600kHz (0x00000E10).
unsigned long MaximumClock; // 7200kHz (0x00001C20)
unsigned char NumClockSupported; // 3. (1800, 3600 and 7200 kHz).
unsigned long DataRate; // 9600 bps (0x00002580).
unsigned long MaxDataRate; // 115200 bps (0x0001C200).

73S12xxF Software User Guide UG_12xxF_016

48 Rev. 1.50

unsigned char NumDataRates; // 7.
unsigned long MaxIFSD; // Application specific.
unsigned long SynchProtocols; // 0x00000000.
unsigned long Mechanical; // Application specific.
unsigned long Features; // Application specific.
unsigned long MaxCCIDMsgLen; // Application specific.
unsigned char ClassGetResponse; // Application specific.
unsigned char ClassEnvelope; // Application specific.
unsigned int LcdLayout; // Application specific.
unsigned char PinSupport; // Application specific.
unsigned char MaxCCIDBusySlots; // Application specific.
struct USB_EP_t EP[NUMBER_OF_EPS-1];
#ifdef DFU
struct USB_Interface_t DFU_I; //One for DFU.
struct USB_DFUFunctional_t DFUFunctional;
#endif
};

struct USB_t
{
U08x *UsbData;
U16 UsbLen;
enum USB_RC UsbStatus;
};

USB_Status()

Purpose Gets the status of the USB interface and its endpoints.

Synopsis Void USB_Status (
 OUT char *cUSB_CONTROL_Status,
 OUT char *cUSB_INTERRUPT_Status,
 OUT char *cUSB_BULK_IN_Status
 OUT char *cUSB_BULK_OUT_Status);

Parameters cUSB_CONTROL_Status: Output parameter
Current state of the Control EndPoint. Possible values are:

USB_ACTIVE 0
USB_SUSPENDED 1
USB_RESUMED 2
USB_STALLED 3
USB_RESET 4
USB_TX_PENDING 5
USB_RX_PENDING 6

 cUSB_INTERRUPT_Status: Output parameter
Current state of the INTERRUPT EndPoint.

 cUSB_BULK_IN_Status: Output parameter
Current state of the BULK_IN EndPoint.

 cUSB_BULK_OUT_Status: Output parameter
Current state of the BULK_OUT EndPoint.

Return Codes None.

USB_ACTIVE indicates that either the Interrupt and Bulk_IN EndPoints are ready for another USB transmission
(the previous one has finished) or that the Bulk_OUT EndPoint is ready for another USB reception.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 49

USB_Stall()
Purpose Stalls portions of the USB interface: The Endpoints to be stalled are configurable.

Synopsis Void USB_Stall (IN char cUSBEndpointStall);

Parameters cUSBEndpointStall: Input parameter

Specifies which endpoints are to be stalled by this function. The other endpoints
remain in their previous state. This parameter can be the result of an OR operation
between the following values if several endpoints are to be disabled:

ENDPOINT_0 0x01
ENDPOINT_1_IN 0x02
ENDPOINT_2_IN 0x04
ENDPOINT_1_OUT 0x08

Return Codes None.

Deactivated endpoints will have a STALLED status. If all endpoints are stalled, it will disconnect
the USB interface from the Host.

USB_UnStall()
Purpose Unstalls portions of the USB interface: The Endpoints to be unstalled are configurable.

Synopsis Void USB_UnStall (IN char cUSBEndpointUnStall);

Parameters cUSBEndpointUnStall: Input parameter

Specifies which endpoints are to be unstalled by this function. The other endpoints
remain in their previous state. This parameter can be the result of an OR operation
between the following values if several endpoints are to be disabled:

ENDPOINT_0 0x01
ENDPOINT_1_IN 0x02
ENDPOINT_2_IN 0x04
ENDPOINT_1_OUT 0x08

Return Codes None.

All unstalled endpoints will have status = IDLE.

USB_IN_1()

Purpose Send data to the Host through Endpoint 1 (BULK IN). When the buffer size is bigger
than the Maximum Packet Size (specified by the Descriptor string initialized in the
USB_Init() function), then the API will split the buffer into smaller blocks and transmit
it in pieces.

Synopsis Void USB_IN_1 (IN struct USB_t *pUSB);
 struct
 {
 unsigned char *USBData,
 unsigned int USBLen
 USB_RC USBStatus
 } USB_t;

Parameters USBData: Input parameter
Specifies the pointer to the data to be transmitted to the Host.

 USBLen: Input/Output parameter
On input, specifies the number of bytes to send to the Host. On output, specifies the
current number of bytes sent to the Host.

73S12xxF Software User Guide UG_12xxF_016

50 Rev. 1.50

 USBStatus: Output parameter
Contains the current status of this transmission, one of the following:

USB_TX_PENDING: Transmission has started, but is not yet complete. On
either a successful completion or a termination due to error, the USBStatus will
change to one of the following:
USB_ACTIVE: Successful data transmission.
USB_SUSPENDED: The HOST has suspended the USB bus, retry later.
USB_STALLED: This Endpoint has been STALLED.
USB_RESET: The HOST has reset the USB bus, retry later.

Return Codes None.

USB_IN_2()

Purpose Send data to the Host through Endpoint 2 (INTERRUPT IN).

Synopsis Void USB_IN_2 (IN struct USB_t *pUSB);

Parameters USBData: Input parameter

Specifies the pointer to the data to be transmitted to the Host.
 USBLen: Input/Output parameter

On input, specifies the number of bytes to send to the Host. On output, specifies the
current number of bytes sent to the Host.

 USBStatus: Output parameter
Contains the current status of this transmission, one of the following:

USB_TX_PENDING: Transmission has started, but is not yet completed. On
either a successful completion or a termination due to error, the USBStatus will
change to one of the following:
USB_ACTIVE: Successful data transmission.
USB_SUSPENDED: The HOST has suspended the USB bus, retry later.
USB_STALLED: This Endpoint has been STALLED.
USB_RESET: The HOST has reset the USB bus, retry later.

Return Codes None.

USB_OUT_1()
Purpose Receive a buffer from the Host through Endpoint 1 (BULK OUT). The data may be

received within several packets if the buffer size is greater or equal to the Maximum
Packet Size, specified by the Descriptor String initialized in USB_Init().

Synopsis Void USB_OUT_2 (IN struct USB_t *pUSB);

Parameters USBData: Output parameter

Contains the bytes received from the Host.
 USBLen: Input/Output parameter

On input, specifies the maximum number of bytes to receive from the Host. On
output, specifies the current number of bytes received from the Host.

 USBStatus: Output parameter
Contains the current status of this reception, one of the following:

USB_RX_PENDING: Reception has started, but is not yet completed. On either
a successful completion or a termination due to error, the USBStatus will change
to one of the following:
USB_ACTIVE: Successful data reception.
USB_SUSPENDED: The HOST has suspended the USB bus, retry later.
USB_STALLED: This Endpoint has been STALLED.
USB_RESET: The HOST has reset the USB bus, retry later.
USB_ERR_OVERFLOW: The HOST has sent too much data.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 51

Return Codes None.

4.2.8 Clock Generator Circuit API – Available with all 73S12xxF Devices
The Clock Generator API configures the system clock speed.

CPU_Select()

Purpose Select the CPU speed. This API should be called after API_Init() is called if a
change in CPU speed is desired. The default speed is 3.69 MHz. Care should be
taken when selecting speeds other than 3.69 MHz, as the speed will affect the
number of supported Serial baud rates and timers API. The timer and Serial baud
rates will be adjusted internally by the LAPI. A wait state will be inserted to allow
USB I/O access time, i.e. CKCON will be set to the appropriate value to adjust wait
states.

Synopsis void CPU_Select (enum CPU_SPEED speed)

Parameters speed: Input parameter

Specifies which CPU speed to run. Possible values are
CPU_3Mhz69 0,
CPU_6Mhz 1,
CPU_12Mhz 2,
CPU_24Mhz 3

Return Codes None.

Some CPU speeds will limit the number of Serial baud rates supported. Table 4 lists the baud rates
supported by specific CPU clock rates.

Table 4: Clock Speeds and Baud Rates Supported

Baud Rate (bps)

CPU Clock Rate
3.69
MHz

6 MHz 12
MHz

24 MHz

600 X
1200 X X
2400 X X X
4800 X X X
9600 X X X
14400 X X X X
19200 X X
28800 X X X
38400 X
57600 X X
115200 X
115385 X
187500 X
375000 X
750000 X

//Can only support these rates when the CPU is running at 3.69 MHz
//CPU_3Mhz69
{BPS_600_3MHz69, BPS_1200_3MHz69, BPS_2400_3MHz69, BPS_4800_3MHz69,
BPS_9600_3MHz69, BPS_14400_3MHz69, BPS_19200_3MHz69, BPS_28800_3MHz69,

73S12xxF Software User Guide UG_12xxF_016

52 Rev. 1.50

BPS_38400_3MHz69,BPS_57600_3MHz69, BPS_115200_3MHz69, 0, 0, 0 },

//Can only support these rates when the CPU is running at 6 MHz
//CPU_6MHz
{0, BPS_1200_6MHz, BPS_2400_6MHz, BPS_4800_6MHz,
 0, BPS_14400_6MHz, 0, 0,
 0, 0, 0, 0 , 0, 0},

//Can only support these rates when the CPU is running at 12 MHz
//CPU_12MHz
{0, 0, BPS_2400_12MHz, 0, BPS_9600_12MHz,
BPS_14400_12MHz, 0, BPS_28800_12MHz, 0,
0, 0, BPS_125000_12MHz, 0, BPS_375000_12MHz },

//Can only support these rates when the CPU is running at 24 MHz
//CPU_24MHz
{0, 0, 0, BPS_4800_24MHz, BPS_9600_24MHz,
BPS_14400_24MHz, BPS_19200_24MHz, BPS_28800_24MHz, 0,
BPS_57600_24MHz, 0, BPS_125000_24MHz, BPS_250000_24MHz,
BPS_375000_24MHz}

4.2.9 Power Management API – Available with all 73S12xxF Devices
The Power Management API configures the active devices, thereby managing the power consumption of
the 73S12xxF. The API includes:

• PowerON() (page 52)
• PowerOFF() (page 53)

PowerON()

Purpose Manage power consumption.

Synopsis Void PowerON (IN unsigned int PowerSelect);

Parameters PowerSelect: Input parameter

Specifies which internal devices to enable. The following possible values (defined in
API_12.h) or any combination (by OR’ing them) are allowed:

ENABLE_EICC BIT14 // External Smart card.
ENABLE_VDDF BIT13 // VDD fault detection
ENABLE_UART BIT12 // Serial
ENABLE_PLL BIT11
ENABLE_ANALOG BIT10
ENABLE_USBXCVR BIT9 //USB Transceiver, Unavailable with 73S1205F
ENABLE_USB BIT8 //D+, Unavailable with 73S1205F
ENABLE_RTC BIT7 // Unavailable with 73S1205F
ENABLE_KEYPAD BIT6
ENABLE_ICC BIT5 // Smart card.
ENABLE_USBCLK BIT4 //USB Clock, Unavailable with 73S1205F
ENABLE_LS_OSC BIT3 //Low speed OSC-32kHz, Unavailable with
73S1205F

 Bits 2, 1 and 0 are reserved for MCount value. Devices which are already enabled
will remain enabled.

Return Codes None.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 53

PowerOFF()
Purpose Manage power consumption.

Synopsis void PowerOFF (IN unsigned int PowerSelect);

Parameters PowerSelect: Input parameter

Specifies which internal devices to disable. The following possible values or any
combination (by OR’ing them) are allowed:

DISABLE_EICC BIT14 // External Smart card.
DISABLE_VDDF BIT13
DISABLE_UART BIT12
DISABLE_PLL BIT11
DISABLE_ANALOG BIT10
DISABLE_USBXCVR BIT9
DISABLE_USB BIT8
DISABLE_RTC BIT7
DISABLE_KEYPAD BIT6
DISABLE_ICC BIT5
DISABLE_ USBCLK BIT4
DISABLE_LS_OSC BIT3
// Bit 2 reserved.
CPU_HALT BIT1
CPU_IDLE BIT0

Return Codes None.

Devices which are already disabled will remain disabled. Any enabled interrupt will cause an exit from
this function.

CPU_HALT has precedence over CPU_IDLE. CPU_IDLE mode stops the clock going to the CPU, all
other clocks keep running.

CPU_HALT mode can be stopped by the USB and RTC interrupts (if available), by a key press, by ICC
insertion or removal or by Reset of the 73S12xxF. In order to use these external events to wake up the
CPU, they must first be individually initialized. For example, ICC_InitUART() or KEY_Init () should be
called prior to calling PowerOFF (DISABLE_ICC) or PowerOFF (DISABLE_KEYPAD). Internally, the API
will configure INT0 to be active upon any of the events (key press, Smart Card event, etc..); thus an
application may setup its own INT0 interrupt service routine via Set_Event (eEXT0, ...) to customize its
specific needs upon waking up.

4.2.10 Analog Threshold Management Driver API – Available with all 73S12xxF Devices
This API controls the analog voltage comparison against the voltage on the ANA_IN pin. The API
includes:

• ANALOG_Detect_Enable() (page 53)
• ANALOG_Detect_Disable() (page 54)
• ANALOG _Compare() (page 54)

ANALOG_Detect_Enable()

Purpose Select the analog threshold level and enable the interrupt according to the polarity setting.

Synopsis void ANALOG_Detect_Enable (
 IN Unsigned char threshold_select,
 IN Unsigned char acomp_pol)

73S12xxF Software User Guide UG_12xxF_016

54 Rev. 1.50

Parameters threshold_select: Input parameter

Specifies which input voltage channel must be compared against Vcompare.
Allowable values are in the range [0, 7].

 acomp_pol: Input parameter
Specifies the polarity for which an interrupt occurs; when voltage level is Above (acomp_pol
= 1) or Below (acomp_pol = 0). Voltage levels are values in the range [0, 7].

7 corresponds to 2.50 volts //Only available with the 73S1205F
6 corresponds to 2.30 volts //Only available with the 73S1205F
5 corresponds to 2.00 volts //Only available with the 73S1205F
4 corresponds to 1.75 volts //Only available with the 73S1205F
3 corresponds to 1.50 volts
2 corresponds to 1.40 volts
1 corresponds to 1.24 volts
0 corresponds to 1.00 volts.

Return Codes None.

ANALOG_Detect_Disable()

Purpose Disable the Analog level detect interrupt.

Synopsis Void ANALOG_Detect_Disable (void);

Parameters None.

Return Codes None.

ANALOG _Compare()

Purpose Compare the selected input voltage against specified threshold.

Synopsis enum ANALOG_RC ANALOG_Compare (
 IN unsigned char threshold_select,
 IN unsigned char acomp_pol);

Parameters threshold_select: Input parameter

Specifies which input voltage to compare against ANA_IN. Values are in the range
[0, 7] as specified below.

 acomp_pol: Input parameter
Specifies which level to compare against (above or below). Values are in the range [0, 7].

7 corresponds to 2.50 volts
6 corresponds to 2.30 volts
5 corresponds to 2.00 volts
4 corresponds to 1.50 volts
3 corresponds to 1.40 volts
2 corresponds to 1.28 volts
1 corresponds to 1.24 volts
0 corresponds to 1.00 volts.

Return Codes ANALOG_OK
 ANALOG_BELOW
 ANALOG_ABOVE

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 55

4.2.11 Event Management API – Available with all 73S12xxF Devices
The Event Management API allows the application to handle all system events. An application should
always call Events_Init() to initialize all event vectors at the beginning of the main program. The API
includes:

• Events_Init() (page 55)
• Events_Clear() (page 55)
• Get_Event () (page 56)
• Set_Event () (page 56)

Events_Init()

Purpose Initialize the system default event vectors. Upon exiting this function, all vectors will
point to a null_isr. For this reason, every feature (Smart card, USB, RTC, Keypad,
LCD, etc.) must call its initialization routine so that its interrupt service routine will be
set properly.

Synopsis void Events_Init (void);

Parameters None.

Return Codes None.

Events_Clear()

Purpose Clear selected events.

Synopsis Void Events_Clear (unsigned long Events);

Parameters Events: Input parameter

Specifies which events to clear. Multiple events are specified by OR’ing together
individual events. Possible values are:

EVENT_EXT0 BIT0
EVENT_EXT1 BIT1
EVENT_EXT2 BIT2
EVENT_EXT3 BIT3
EVENT_TIMER0 BIT4
EVENT_TIMER1 BIT5
RFU BIT6
EVENT_RTC BIT7 //not available with the 73S1205F
EVENT_KEY_DETECT BIT8
EVENT_USB BIT9 //not available with the 73S1205F
EVENT_VDDF BIT10
EVENT_I2C BIT11
EVENT_ANALOG BIT12
EVENT_USR0 BIT13
EVENT_USR1 BIT14
EVENT_USR2 BIT15
EVENT_USR3 BIT16
RFU BIT17

Return Codes None.

73S12xxF Software User Guide UG_12xxF_016

56 Rev. 1.50

Get_Event ()
Purpose Get selected event vector.

Synopsis (* void ()) Get_Event_Vector (IN enum EVENT_ID eEventID);

Parameters eEventID: Input parameter

Specifies for which event to return the current vector. Possible values are:
eEXT0, // 0
eEXT1, // 1
eEXT2, // 2
eEXT3, // 3
eTIMER0, // 4
eTIMER1, // 5
eICC, // 6 – will return pointer to a Null_isr
eRTC, // 7
eKEY_DETECT, // 8
eUSB, // 9
eVDDF, // 10
eI2C, // 11
eANALOG, // 12
eUSR0, // 13
eUSR1, // 14
eUSR2, // 15
eUSR3, // 16
eSERIAL // 17– will return pointer to a Null_isr

Return Value Selected Event vector.

Set_Event ()
Purpose Set selected event vector. Use this function to redirect an interrupt service routine to

a customized function/routine. Care must be taken when using this function as other
functions within the LAPI may no longer work.

Synopsis Void Set_Event_Vector (
 IN enum EVENT_ID eEventID,
 IN void (*pEventVector)(void));

Parameters eEventID: Input parameter

Specifies for which event to add the handler. Possible values are:
eEXT0, // 0
eEXT1, // 1
eEXT2, // 2
eEXT3, // 3
eTIMER0, // 4
eTIMER1, // 5
RFU, // 6
eRTC, // 7
eKEY_DETECT, // 8
eUSB, // 9
eVDDF, // 10
eI2C, // 11
eANALOG, // 12
eUSR0, // 13
eUSR1, // 14
eUSR2, // 15
eUSR3, // 16

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 57

RFU // 17
pEventVector: Input parameter
Pointer (vector) to the function to call when the event occurs.

Return Codes None.

The eUSB handler should check the x.USBStatus value and/or call the
USB_Status() routine to determine which USB event occurred. All other events have unique causes.

4.2.12 Timers API – Available with all 73S12xxF Devices
The Timers API allows up to four 16-bit 10 ms timers to be run concurrently. Hardware timer T0 is
dedicated for the Timers API. The API includes:

• Timers_Init () (page 57)
• Wait() (page 57)
• Wait_1ms() (page 57)
• Add_Timer() (page 57)
• Add_Timer_Func() (page 58)
• Remove_Timer() (page 58)
• Process_Timers() (page 58)

Timers_Init ()

Purpose Initialize all registers and functions associated with Timer 0 and Timer 1.

Synopsis Void Timers_Init (void);

Parameters None.

Return Codes None.

Wait()

Purpose Wait (10 x nTimeWait) milliseconds and then return.

Synopsis Void Wait (IN unsigned int nTimeWait);

Parameters nTimeWait: Input parameter

Specifies how many 10 msec units to wait before returning to the caller.

Return Codes None.

Wait_1ms()

Purpose Wait (nTimeWait) milliseconds and then return.

Synopsis Void Wait (IN unsigned int nTimeWait);

Parameters nTimeWait: Input parameter

Specifies how many 1 msec units to wait before returning to the caller.

Return Codes None.

Add_Timer()

Purpose Add a 10 ms software timer.

73S12xxF Software User Guide UG_12xxF_016

58 Rev. 1.50

Synopsis Unsigned Integer *Add_Timer (IN Unsigned integer nDuration)

Parameters nDuration: Input parameter

Specifies duration of time in 10 ms units.

Return Value Pointer to added timer. If the value is zero (NULL), there are no timers available.

This function can be called inside an ISR. When the timer expires (*pTimer == 0), it will be automatically
removed. If all timers are in use, a NULL pointer will be returned. The Process_Timers() routine must be
called to keep the timer updated.

Add_Timer_Func()

Purpose Add a 10 ms software timer and the function to execute on timer expiration.

Synopsis Unsigned Integer *Add_Timer_Func (
 IN unsigned int nDuration,
 IN void (*pfExpire (void)));

Parameters nDuration: Input parameter

Specifies duration of time in 10 ms units.
 pfExpire: Input parameter

Specifies a pointer to the function to execute when the timer expires.

Return Value Pointer to the added timer. If value is zero, there are no timers available.

Remove_Timer()

Purpose Stop and remove the selected timer.

Synopsis Void Remove_Timer (IN unsigned integer *pTimerId);

Parameters ptimerID: Input parameter

Specifies which timer to stop and remove. This is the value returned by the
Add_Timer() or Add_Timer_Func() functions.

Return Codes None.

Process_Timers()

Purpose Process and update the active timers. This function must be called from a
foreground routine whenever there is active timer.

Synopsis Void Process_Timers (void);

Parameters None.

Return Codes None.

4.2.13 User IO API – Available with all 73S12xxF Devices
The USER IO Pins can be configured, individually, as an interrupt source to Timer 0, Timer 1, INT0 or
INT1. For INT0 or INT1, the interrupt can be configured to occur on the rising edge/high level or falling
edge/low level. Only INT0 can be used to wake up the CPU from sleep/halt mode. This API includes:

• USR_INT_Config () (page 59)
• USR_INT_Read() (page 59)
• USER_IO_Config() (page 60)
• USER_IO_Read() (page 60)
• USER_IO_Write() (page 60)

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 59

USR_INT_Config ()
Purpose Configure USER IO as an interrupt source for T0, T1, INT0 or INT1.

Synopsis void USR_INT_Config (
 IN enum USRINTSRC usr_src,
 IN enum USRINTSEL int_select,
 IN Boolean Enable,
 IN Boolean EdgeTrigger)

Parameters usr_src: Input parameter

Specifies which USER IO is to be used as the interrupt source. The available
choices (defined in USRINTSRC in api_struct_12.h) are:

USR0SRC 0,
USR1SRC 1,
USR2SRC 2,
USR3SRC 3,
USR4SRC 4,
USR5SRC 5,
USR6SRC 6,
USR7SRC 7

 Int_select: Input parameter
Selects the interrupt source (defined in USRINTSEL in api_struct_12.h) as:

NOT_USE1 0,
NOT_USE2 1,
SEL_TIMER0 2,
SEL_TIMER1 3,
SEL_INT0_HI_RISE 4,
SEL_INT1_HI_RISE 5,
SEL_INT0_LOW_FALL 6,
SEL_INT1_LOW_FALL 7;

 Enable: Input parameter
If TRUE, enables the selected interrupt source; otherwise, disables it.

 EdgeTrigger: Inupt parameter
For INT0 and INT1 only, sets the interrupt to be level (FALSE) or edge (TRUE).

Return Codes None.

USR_INT_Read()

Purpose Read the current interrupt settings of the specified USER IO pin.

Synopsis enum USRINTSEL USR_INT_Read (enum USRINTSRC usr_src);

Parameters usr_src: Input parameter

Corresponding USR pin to read the interrupt setting from.

Return Codes One of the following as defined in USRINTSEL:

NULL,
SEL_TIMER0 2,
SEL_TIMER1 3,
SEL_INT0_HI_RISE 4,
SEL_INT1_HI_RISE 5,
SEL_INT0_LOW_FALL 6,
SEL_INT1_LOW_FALL 7;

73S12xxF Software User Guide UG_12xxF_016

60 Rev. 1.50

USER_IO_Config()
Purpose Configure the direction for the USER IO pins.

Synopsis void USER_IO_ Config (Unsigned char usrsrc, Unsigned char dir)

Parameters usrsrc: Input parameter

Corresponding USR pins to be configured as Input or Output. USRIO 0 through 7
will be configured according to the Dir parameter below.

 Dir: Input parameter
Direction value (1=input, 0=output) for the selected pins.

Return Codes None.

USER_IO_Read()

Purpose Read the value of the USER IO pins.

Synopsis void USER_IO_Read (OUT char *user_dir, OUT char *user_data);

Parameters User_dir: Output parameter

Direction value (1=input, 0=output) for the selected pins.
 User_data: Output parameter

Value of the corresponding USER IO pins. All outputs will reflect the last value
written.

Return Codes None.

USER_IO_Write()

Purpose Write values to selected USER IO pins.

Synopsis Void USER_IO_Write (IN char cUserIO, IN char cUserIOselect);

Parameters cUserIO: Input parameter

Values to write to selected USER IO pins.
 cUserIOselect: Input parameter

 A ‘1’ in the corresponding bit will enable writing to that USR pin provided it is
configured as an output.

Return Codes None.

4.2.14 External Interrupts API – Available with all 73S12xxF Devices
This API allows direct access to the two external interrupt pins (EXT3 and EXT2). These two interrupts
are only available as edge (falling/negative or rising/positive) sensitive. The API includes:

• INT2_Config() (page 60)
• INT2_Read() (page 61)
• INT3_Config() (page 61)
• INT3_Read() (page 61)

INT2_Config()

Purpose Configure External Interrupt 2.

Synopsis void INT2_Config (Unsigned char Enable, Unsigned char Polarity);

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 61

Parameters Enable: Input parameter
Enable (1) or disable (0) interrupt 2.

 Polarity : Input parameter
Configure interrupt on rising edge (1) or falling edge (0).

Return Codes None.

INT2_Read()

Purpose Read value of External Interrupt 2.

Synopsis void INT2_Read (Unsigned char *polarity, Unsigned char *status)

Parameters polarity: Output parameter

Specifies the polarity of the external interrupt 2 pin, rising edge = 1, falling edge = 0.
 status: Output parameter

External interrupt 2 edge flag.

Return Codes None.

INT3_Config()

Purpose Configure External Interrupt 2.

Synopsis void INT3_Config (Unsigned char Enable, Unsigned char Polarity);

Parameters Enable: Input parameter

Enable (1) or disable (0) interrupt 3.
 Polarity: Input parameter

Configure interrupt on rising edge (1) or falling edge (0).

Return Codes None

INT3_Read()

Purpose Read value of External Interrupt 3.

Synopsis void INT3_Read (Unsigned char *polarity, Unsigned char *status)

Parameters polarity: Output parameter

Specifies the polarity of the external interrupt 3 pin, rising edge = 1, falling edge = 0.
 status: Output parameter

External interrupt 3 edge flag.

Return Codes None.

4.2.15 Special Function Register API – Available with all 73S12xxF Devices
The API allows read/write access to all the 73S12xxF special function registers. The API includes:

• SFR_Read() (page 61)
• SFR_Write() (page 62)

SFR_Read()

Purpose Read from the specified Special Function Register.

73S12xxF Software User Guide UG_12xxF_016

62 Rev. 1.50

Synopsis SFR_RC SFR_Read (IN char cSFRAddr, OUT char *pcSFRValue);

Parameters cSFRAddr: Input parameter

Specifies the address of the Special Function Register to be read.
 pcSFRValue: Output parameter

Specifies the value read from the specified Special Function Register.

Return Codes SFR_OK Successful read from the SFR.
 SFR_INVALID Invalid SFR referenced.

SFR_Write()
Purpose Write to the specified Special Function Register.

Synopsis SFR_RC SFR_Write (IN char cSFRAddr, IN char cSFR, IN char cSFROperation);

Parameters cSFRAddr: Input parameter

Specifies the address of the Special Function Register to be written.
 cSFR: Input parameter

Specifies the value to use to either set, clear or assign bits of the Special Function
Register specified.

 cSFROperation: Input parameter
Specifies the operation to perform on the Special Function Register with the value
supplied. Possible values are:

ASSIGN_SFR 0
AND_SFR 1
OR_SFR 2

Return Codes SFR_OK Successful write to the SFR.
 SFR_INVALID Invalid or forbidden SFR referenced.

To set specific bits of the SFR, OR them with ‘1’s. To clear specific bits of the SFR AND them with ‘0’s.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 63

4.2.16 Flash/Memory API – Available with all 73S12xxF Devices
Flash management assumes that the CPU is running at the default clock rate of 3.69 MHz. A Flash write
is processed on a page basis. If a write to a Flash address overlays two pages, a two-page write
operation will be performed.

The Flash write process involves 4 steps: Read, Erase, Verify, Write. Should any of these steps fail, the
write operation will fail. The user must use caution when using these APIs as there will be no check in
the LAPI for accidental writes. The API includes:

• Flash_Init() (page 63)
• memcpy_rx () (page 63)
• memcpy_xx () (page 64)
• memcpy_xi () (page 64)
• memcpy_ix () (page 64)
• memcmp_rx () (page 65)
• memcmp_xx () (page 65)
• memset_x () (page 65)
• strlen_x () (page 66)
• strlen_r () (page 66)
• Log2 () (page 66)

Flash_Init()

Purpose Initialize the Flash management registers to values appropriate for the CPU running
at the default speed.

Synopsis void Flash_Init (void);

Parameters None.

Return Codes None.

memcpy_rx ()

Purpose Flash management – use to write to a Flash page that the destination ROM address
belongs to using the contents from the RAM source location. If the length of the
source and the starting ROM location cause the write operation to span more than
one 512-byte Flash page, the Read/Erase/Verify/Write will take place on all the
pages involved. An erase operation will result in the Flash contents being set to
0xFF.

Synopsis Bbool memcpy_rx (
 Unsigned char code *dst,
 Unsigned char xdata *src,
 Unsigned integer len);

Parameters dst: Input parameter

Specifies starting ROM address of Flash to be written (destination).
 src: Input parameter

Use contents at this RAM address location as the source data.
 len: Input parameter

Length (in bytes) of data to write to Flash.

Return Codes TRUE if the Write was successful.
 FALSE if the Write was not completed.

73S12xxF Software User Guide UG_12xxF_016

64 Rev. 1.50

memcpy_xx ()
Purpose Memory management – use to copy the contents of external RAM (XRAM)

location(s) to other XRAM location(s).

Synopsis memcpy_xx (
 Unsigned char xdata *dst,
 Unsigned char xdata *src,
 Unsigned integer len);

Parameters dst: Input parameter

Destination: specifies starting address of XRAM to be written.
 src: Input parameter

Use data at this XRAM address location as the source data.
 len: Input parameter

Length (in bytes) of data to copy from source to destination.

Return Codes None.

memcpy_xi ()

Purpose Memory management – use to copy the contents of internal RAM (IRAM) location(s)
to XRAM location(s).

Synopsis memcpy_xi (
 Unsigned char xdata *dst,

 Unsigned char idata *src,
 Unsigned char len);

Parameters dst: Input parameter
Destination: specifies starting address of XRAM to be written.

 src: Input parameter
Use data starting at this IRAM location as the source data.

 len: Input parameter
Specifies the length (in bytes) to write to XRAM.

Return Codes None.

memcpy_ix ()
Purpose Memory management – use to copy the contents of XRAM locations to IRAM

locations.

Synopsis memcpy_ix (
 Unsigned char idata *dst,
 Unsigned char xdata *src,
 Unsigned char len);

Parameters dst: Input parameter

Destination: specifies starting address of IRAM to be written
 src: Input parameter

Use data starting at this XRAM location as the source data.
 len: Input parameter

Specifies the length (in bytes) to write to IRAM.

Return Codes None.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 65

memcmp_rx ()
Purpose Memory management – use to compare the contents of an XRAM location and a

ROM location.

Synopsis Signed char memcmp_rx (
 Unsigned char code *dst,
 Unsigned char xdata *src,
 Unsigned integer len);

Parameters dst: Input parameter

Specifies the starting address of the ROM data to be compared.
 src: Input parameter

Specifies the starting address of the XRAM data to compare to.
 len: Input parameter

Specifies the length (in bytes) of data to compare.

Return Codes 0 if the compare is successful (data matched).
 Non zero if the source and destination data do not match.

memcmp_xx ()
Purpose Memory management – use to compare the contents of an XRAM location and

another XRAM location.

Synopsis Signed char memcmp_xx (
 Unsigned char xdata *dst,
 Unsigned char xdata *src,
 Unsigned integer len);

Parameters dst: Input parameter

Specifies the starting address of the the first XRAM location to be compared.
 src: Input parameter

Specifies the starting address of the the XRAM location to compare to.
 len: Input parameter

Specifies the length (in bytes) of data to compare.

Return Codes 0 if the compare is successful (data matched).
 Non zero if the source and destination data do not match.

memset_x ()
Purpose Memory management – use to fill the contents of XRAM with a specified value.

Synopsis void memset_x (
 Unsigned char xdata *dst,
 Unsigned char s,
 Unsigned integer len);

Parameters dst: Input parameter

Specifies the starting address of the XRAM locations to fill.
 src: Input parameter

Specifies the value to fill the XRAM with.
 len: Input parameter

Specifies the number of bytes to fill with the specified data.

Return Codes None.

73S12xxF Software User Guide UG_12xxF_016

66 Rev. 1.50

strlen_x ()
Purpose Compute the string length of ASCII data in XDATA (XRAM).

Synopsis unsigned int strlen_x (IN unsigned char xdata *psource);

Parameters psource: Input parameter

Specifies a pointer to the source data in XRAM.

Return Value Length of the ASCII data string (in bytes) in the specified XRAM location.

strlen_r ()

Purpose Compute the string length of ASCII data in ROM (Flash).

Synopsis unsigned int strlen_x (IN unsigned char code *psource);

Parameters psource: Input parameter

Specifies a pointer to the source data in Flash.

Return Value Length of the ASCII data (in bytes) in the specified Flash ROM location.

Log2 ()
Purpose Compute the logarithm (base 2) of the input.

Synopsis unsigned int log2 (IN unsigned int unumber);

Parameters unumber: Input parameter

The input value to determine the log2 of.

Return Value log2 of the input.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 67

4.2.17 Boot Loader and Passcode Management – Available with the LAPI-*BL.lib Only
The Boot Loader code occupies the first (lower) 512 bytes of the Flash program space (0x0000 - 0x01FF)
including the passcode storage space. The Boot Loader assumes that the CPU is running at the default
clock rate which is 3.69 MHz. As a result, the serial baud rate and all soft-timers (timer 0) are calculated
based on the default CPU clock rate. The Boot Loader also only accepts Intel Hex files via the Serial
RS-232 interface. The Boot Loader and Passcode Management API include:

• Boot() (page 68)
• CheckPassCode () (page 68)
• SetPassCode () (page 69)

For security and authorization enforcement, the passcode is implemented, embedded and validated
within the Boot Loader code. The Boot Loader will return a hardware error if Security Mode 0 or Security
Mode 1 has already been enabled. Figure 9 depicts a successful Boot Loader scenario.

Application
Layer

LAPI

Invoke the Boot
Loader Code

Boot (U16 PassCode)

Send Intel Hex record (one record at a time) in the format of:
:NNAAAARRDD..DD.CRC<crlf> NN=#of bytes in record, AAAA = address of first byte,
RR=record type - see Note2

'P' = pass (record is valid) OR 'F' = fail

Validate PassCode
 and wait for

Intel hex record

Start
Flash
Prog.

Start
Flash
Down
Load

If response = 'F'
resend the record,
 ifresponse = 'P'
send next record

Figure 9: Boot Loader Scenario

The Passcode is a 2-byte integer data type where the second byte is the complement of the first byte.
After validating the Passcode, the LAPI will configure the device’s serial interface to be running at 115200
baud with 8 data bits, No stop bit and Xon/Xoff control enabled. It then waits for a valid Intel hex
record from the Serial RS-232 interface. The record’s checksum is checked along with its Flash address
location. The Boot Loader code area (the first page of Flash – 512 bytes at address 0x0000 – 0x01FF)
will be protected. Any hex record with addresses on the first page will be ignored. Once a valid hex
record is accepted by the device, all Flash space (except for the Boot Loader area) will be permanently
erased. For each successful hex record received by the device, the device will respond with a ‘P’. For
each failed hex record received by the device (bad CRC), the device will respond with an ‘F’. When the
device receives the last successful hex record and if there is no error, the device will immediately jump to
the start of the new application. For a sample of the usage of the Boot Loader API, review the
Pseudo-CCID application code (built and shipped in a separate TSC 73S12xxF PCCID Serial release).

Figure 10 illustrates the Flash Download and Flash Programming process.

73S12xxF Software User Guide UG_12xxF_016

68 Rev. 1.50

Application/Host

Received hex
record from
App/Host

Good record
(good CRC)?

Send 'F' to App/
Host

Address >
0x01FF

Send 'P' to App/
Host

Program Flash
with Hex record End of File?

Yes

Jump to new app.

Start
Flash
Prog.

Yes

Start
Flash
Down
Load

Configure COM port
@ 115,200 baud,

8N1, Xon/Xoff

Open Hex File
Yes

No

No

End of file?Read Hex Record

Send Record to
LAPI

No

Prompt User to
terminate App.

LAPI Responds
= ?

Retry
exhausted'P' 'F'

No

Yes

Yes

LAPI-*.lib

Ignore Record

No

Configure COM port
@ 115,200 baud,

8N1, Xon/Xoff

Figure 10: FLASH Download and Programming Process

Boot()

Purpose Invoke the Boot Loader function to start reprogramming of Flash.

Synopsis void Boot (U16 PassCode);

Parameters PassCode: Input parameter

Specifies the 2-byte passcode.

Return Codes FALSE if the PassCode fails validation.

Once an application calls the Boot function, and the PassCode is validated, control will not be returned.

CheckPassCode ()
Purpose Validate the PassCode for Security Mode management, PassCode management and

the Boot function.

Synopsis Bbool CheckPassCode (U16 PassCode);

Parameters PassCode: Input parameter

Specifies the 2-byte passcode.

Return Codes TRUE if the PassCode is validated.
 FALSE if the PassCode doesn’t match with the passcode stored in the Boot Loader

code space.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 69

SetPassCode ()
Purpose Change the PassCode to a new value. The first (and default) passcode is 0x5AA5

and is stored at location 0x01E0 and 0x01E1. When SetPassCode() is executed the
first time, it writes 0x0000 to these two addresses. The new PassCode will be written
at 0x01E2 and 0x01E3. Each time this function is called, the new PassCode will be
written at the next two consecutive address locations and the location of the
OldPassCode will be over-written with a value of 0x0000. Once the new PassCode
reaches the last location (address location 0x01F1), this function will no longer be
allowed to change the PassCode.

Synopsis SetPassCode (U16 OldPassCode, U16 NewPassCode);

Parameters OldPassCode: Input parameter

Old PassCode as stored in the Boot Loader code space.
 NewPassCode: Input parameter

NewPassCode to be stored in the new passcode location.

Return Codes TRUE if both the OldPassCode is validated and the number of passcode changes

has not exceeded 8. (The total number of passcode changes allowed is 8)

4.2.18 Security Mode Management - Available with the LAPI-*BL.lib Only
There are three possible security modes, defined as MODE0, MODE1 and MODE2. MODE0 and
MODE1 are directly controlled by the hardware by a call to the LAPI. MODE2 is controlled by the
application layer using the PassCode mechanism as designed by LAPI. A correct PassCode is required
before the security mode can be set. The Security Mode Management API includes:

• SETSecurity () (page 70)
• SECStatus () (page 70)

The processes which occur when initiating each of the three modes are described below. Table 5 shows
the actions allowed during each mode.

Mode 0
1. Flctl SFR (0xB2 bit 6) is already set in the current flash program.
2. Setup the Fuse Control Register.
3. Setup the Security Ctl Register.
4. Enable the Trim Pulse Ctl Register

After Mode 0 is executed, a full circuit reset must be done for mode 0 to be in effect.

Mode 1
1. SEC (JP15 on EVB) bit set to HI.
2. Setup the Fuse Control Register.
3. Setup the Security Ctl Register.
4. Enable the Trim Pulse Ctl Register

Mode 2
This mode is strictly firmware and is implemented at the application level by calling the SetPassCode () API.
1. If the Passcode is valid and has been modified less than 8 times, the application should loop through

to exhaust the number of times the passcode change is allowed.
2. Scramble the last passcode with an invalid value then write it to the last designated location of the

passcode. The TSC Pseudo-CCID for Serial RS-232 release contains application source code that
demonstrates this mode. Please contact a Teridian Sales Representative for a copy.

73S12xxF Software User Guide UG_12xxF_016

70 Rev. 1.50

If the passcode has changed 8 times prior to entering Mode 2, it will be disabled since no more passcode
changes are allowed. Since this mode is controlled by firmware, it can be reset/re-initialized by using the
ICE to reprogram the Flash.

Table 5: Security Mode Actions Allowed

 Action Mode 0 Mode 1 Mode 2
PassCode Change No Yes2 No
Program Space Visible via the ICE Flctl SFR bit 6:

 Set - No
 Not Set - Yes

No Yes

Flash Programmable via ICE Yes1 No Yes
Flash Program via Boot Loader Yes Yes2 No

1 To reprogram the Flash using the ICE, hit the Erase button via the ICE, hit Reset on the EVB, then
reload the Flash. If the new program has the FlCtl SFR security mode bit (bit 6) set, the ICE will continue
to be disabled (this is the case for all firmware with 'BL' in the filename).
2 The Passcode and Boot Loader reside on the first page of Flash, which is protected by Mode 1. In
order to completely protect the Flash, enable Mode 2 which will disable Passcode and Boot Loader
changes.

SETSecurity ()

Purpose Set the hardware security to Mode 0 or Mode 1. Care must be taken as once this
API is finished, the action is not reversible.

Synopsis void SETSecurity (U08 Mode)

Parameters Mode: Input parameter

MODE0 – This mode only works when the Flash Control SFR (0xB2 bit 6) is set.
LAPI-MBL.lib was built with this SFR already setup for this mode.
MODE1 – The security bit (JP15 on the 1215 EVB) must be set high in order to set
this mode.

Return Codes None.

SECStatus ()

Purpose The current hardware security status of the part. This function only returns the
hardware security status (MODE 0 or MODE 1). Since Mode 2 is a
firmware/application level control, it will not be reported.

Synopsis U08 SECStatus (void)

Parameters None.

Return Codes MODE0 = BIT0 (0x01) – returned if the part is already in MODE 0.
 MODE1 = BIT1 (0x02) – returned if the part is already in MODE 1.
 0x00 – returned if no security mode setup has been performed on the part.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 71

4.2.19 Other Miscellaneous API Calls – Available with all 73S12xxF Devices
Several API calls are provided to help with initializing or re-initializing all the registers, interrupts and
events. As a general guideline, API_Init() should always be called at the beginning of the application
main routine. The miscellaneous APIs include:

• API_Init() (page 71)
• Soft_Reset () (page 71)

API_Init()

Purpose Enable TIMER0 and TIMER1 interrupts, clear all pending USB interrupts, set the
CPU to run at 3.69 MHz. Always call this routine at the beginning of an embedded
application.

Synopsis void API_Init (void);

Parameters None.

Return Codes None.

Soft_Reset ()

Purpose Initialize all 73S12xxF specific internal and external SFRs to their hardware power-on
defaults.
 Initialize Smart Card SFRs to hard reset default values.
 Initialize USB SFRs to hard reset default values.
 Initialize most 80515 SFRs.

Synopsis void Soft_Reset (void);

Parameters None.

Return Codes None.

73S12xxF Software User Guide UG_12xxF_016

72 Rev. 1.50

4.3 High-Level API
The 73S12xxF comes with a high-level API library to control the Smart Card. This library is linked to the
low-level API as described in Section 4.2 Low-level API for all smart card communication controls.

4.3.1 Smart Card Control
This API provides support for the asynchronous (T=0) and (T=1) Smart Card protocol management.
Each Smart Card interface is individually addressed by specifying the correct eIccId value. Up to 9 smart
card slots can be configured, with the first (ICC_1ST) being the internal slot and the next 8 being external
slots. The API provides specific support for several test suite constraints (Microsoft WHQL (aka HCT),
EMVCo (MCI and VCI)) by adding several options to most of the API functions.

The Smart Card API includes:

• ICC_Enable() or ICC_Enable_Ext () (page 73)
• ICC_WarmReset() (page 75)
• ICC_PTSNegotiate() (page 76)
• ICC_Send() (page 77)
• ICC_Send_Ext() (page 78)
• ICC_Configure_Ext () (page 79)
• ICC_Configure() (page 82)
• ICC_Disable() (page 83)
• ICC_CheckPresence() (page 84)

In order to use this API, the following minimum set of files is required:

 IccMgt.h: header file which contains the prototypes for the API services.
 Icc_api-*.lib: this is the ICC library itself.
 Allocate.c: allows configuring the number of ICC interfaces used (therefore, only the memory for the

used interfaces is reserved).
 Api_12.h and API_Struct_12.h: header files for low-level API.
 Portable.h: contains definitions for C code portability.

Several applications are included in the release which deal with multiple smart card slots. In order for the
multiple smart card slot feature to function properly, it must first be configured using the ICC_Configure()
API. For a sample utilization of the ICC library, see the sample applications: CCID firmware or Pseudo-
CCID firmware.

Configuring the ICC Interfaces
The ICC_USED_INTERFACE_NUMBER and INTERFACE_USED[9] definitions in the Allocate.c file
must be modified as shown below before using the API services. In this example, Smart card slots 1 and
2 are to be utilized.

#define ICC_USED_INTERFACE_NUMBER 2 //two smartcard slots

unsigned char code INTERFACE_USED[9] =
{
ICC_1ST,
ICC_2ND,
ICC_NONE,
ICC_NONE,
ICC_NONE,
ICC_NONE,

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 73

ICC_NONE,
ICC_NONE,
ICC_NONE
};

ICC_Enable() or ICC_Enable_Ext ()
Purpose Activate the Smart Card interface slot specified by eIccId, and return the ATR to the

application. ICC_Enable_Ext() is the extended function. The extended version has
one additional parameter as input. This last parameter is a pointer to a callback
function to be called whenever the card sends a request for wait time extension
(S(WTX) in T=1 or 0x60 (NULL) in T=0 per the CCID Specification).

Synopsis AR_ICC_RC ICC_Enable (
 IN enum ICC_ID eIccId,
 IN BOOLEAN bIccATRAutoCheck,
 IN BOOLEAN bIccEMVCompliant,
 IN BOOLEAN bIccHighSpeed,
 IN BOOLEAN bIccClockStopEnable,
 IN enum ICC_POWER ucIccPowerSelect,
 OUT unsigned char *pucIccATR
 OUT unsigned char *pucIccATRLength);
 or
 AR_ICC_RC ICC_Enable_Ext (
 IN enum ICC_ID eIccId,
 IN BOOLEAN bIccATRAutoCheck,
 IN BOOLEAN bIccEMVCompliant,
 IN BOOLEAN bIccHighSpeed,
 IN BOOLEAN bIccClockStopEnable,
 IN enum ICC_POWER ucIccPowerSelect,
 OUT unsigned char *pucIccATR
 OUT unsigned char *pucIccATRLength,
 IN (Send_WTE) (void));

Parameters eIccId: Input parameter.
The lower (least significant) 4-bits specify which Smart Card interface is to be
activated. Possible values are:

ICC_1ST 0, (Internal)
ICC_2ND 1, (External)
…
ICC_9TH 8 (External).

 The higher (most significant) 4-bits specify whether the card detect polarity is high
(CARD_DET_H) or low (CARD_DET_L). See additional details at the end of the
description for this function.

 bIccATRAutoCheck: Input parameter
Specifies whether the Smart Card interface must be immediately de-activated in the
case of an unsupported ATR (TRUE) or if the ATR must be transmitted back to the
application, which will decide what needs to be done (e.g. performing a Warm
Reset). [The default value should be TRUE, but for the various test suites, it may be
necessary for the application to decide whether or not the interface is to be
deactivated.]

 bIccEMVCompliant: Input parameter
Specifies whether the Smart Card interface is to be managed according to the EMV
Specification (TRUE) or to the ISO 7816-3 standard (FALSE). This is especially
important on TimeOut errors and on IFSD negotiation. On TimeOut errors in the T=1
protocol, EMV specifies that the IFD must de-activate the Smart Card interface,

73S12xxF Software User Guide UG_12xxF_016

74 Rev. 1.50

whereas the ISO 7816-3 standard allows an error recovery procedure. EMV
specifies that the IFD must initiate an IFSD negotiation before the first command
transmission in (T=1) protocol. When EMV mode is specified, bIccIFSDRequestT1
is set to TRUE and bIccDeactivatedOnTimeOutErrorT1 is set to TRUE.

 bIccHighSpeed: Input parameter
Specifies if the reader has to switch to the high speed clock (7.384 MHz) if the smart
card allows it (according to parameter Fi in the ATR). If this parameter is FALSE, the
reader will always use the default clock, namely 3.692 MHz. If the value is TRUE,
the reader will switch to 7.384 MHz after the ATR, if the smart card allows this speed.

 bIccClockStopEnable: Input parameter
If this flag is set to TRUE and the smart card allows clock stop/start, the clock will be
stopped when there is no transaction. That is to say that the clock is stopped after a
command is done and restarted before the next command will be executed.

 ucIccPowerSelect: Input parameter
Specifies the voltage that is to be applied to the card. Possible values are:

ICC_POWER_AUTOMATIC 00, (automatic voltage selection according to ISO
7816-3 standard)

ICC_POWER_SET_5 01,
ICC_POWER_SET_3 02, Other values are RFU.

 pucIccATR: Output parameter
The ATR value returned by the Smart Card.

 pucIccATRLength: Output parameter
Length of the ATR returned by the Smart Card. This value should not exceed 32, as
the ATR cannot contain more than 32 bytes.

 Send_WTE: Input parameter
Call this function whenever the card sends a Wait Time Extension request (in T=1,
whenever the card sends an S(WTX) block; for T=0, whenever the card sends NULL
(0x60) when it is waiting for data from the reader). This functionality is required by
the CCID Specification. This callback function will NOT be called if the smart card is
called for EMV mode because of the strict timing requirements of the EMV
Specification.

Return Codes AR_ICC_OK
Successful operation. The Smart Card was activated and the ATR is supported
by the chip.

 AR_ICC_ERR_BAD_PARAM
An invalid parameter (eIccId for example) was specified.

 AR_ICC_ERR_CARD_MUTE
The Smart Card is mute.

 AR_ICC_ERR_CARD_ABSENT
No Smart Card is inserted.

 AR_ICC_ERR_CARD_DISCONNECTED
 The Smart Card was deactivated.
 AR_ICC_ERR_CARD_OVERLOAD
 The Smart Card has generated an over current.
 AR_ICC_ERR_CARD_UNSUPPORTED_ATR

The Smart Card ATR is not supported by the chip and is stored in pucIccAtr.
The Smart Card interface has not been de-activated (bIccATRAutoCheck option
is not selected).

 AR_ICC_ERR_BAD_TCK
The ATR has a bad TCK byte.

 AR_ICC_ERR_BAD_TS
The ATR has a bad TS byte.

 AR_ICC_ERR_CARD_COMM_PB
The ATR has either a parity error, an Rx over-run or a VCC unstable error.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 75

The eIccId parameter is split into two fields: Card Detect Polarity and Card Slot number, by using the
most significant nibble and least significant nibble, respectively. Therefore, the most significant nibble of
the eIccId parameter is used to determine if the Card Detect Polarity is to be configured High or Low.
The constants CARD_DET_H and CARD_DET_L are defined in ICCMgt.h. Examples:

1. If Card Detect Polarity is to be set to High when a card is inserted, it can be done so by calling:

ICC_Enable(eIccId | CARD_DET_H, bIccATRAutoCheck,etc.).
2. If Card Detect Polarity is to be set to Low when a card is inserted, it can be done so by calling:

ICC_Enable(eIccId | CARD_DET_L, bIccATRAutoCheck,etc.).
3. Calling ICC_Enable (eIccId, bIccATRAutoCheck, etc.) without OR’ing eIccId with CARD_DET_L or

CARD_DET_H (in other words, eIccID <= 0x09) will default to CARD_DET_H.

ICC_WarmReset()

Purpose Perform a Warm Reset on the Smart Card and return the ATR to the application.

Synopsis AR_ICC_RC ICC_WarmReset (
 IN enum ICC_ID eIccId,
 OUT unsigned char *pucIccATR,
 OUT unsigned int *punIccATRLength);

Parameters eIccId: Input parameter

Specifies which Smart Card interface is to be activated. Possible values are:
ICC_1ST 0, (Internal)
ICC_2ND 1, (External)
…
ICC_9TH 8 (External).

 pucIccATR: Output parameter
ATR value returned by the Smart Card.

 punIccATRLength: Output parameter
Length of the ATR returned by the Smart Card. This value should not exceed 32, as
the ATR cannot contain more than 32 bytes.

Return Codes AR_ICC_OK
 Successful operation. The received ATR is stored in pucIccATR.
 AR_ICC_ERR_BAD_PARAM
 An invalid parameter (eIccId for example) was specified.
 AR_ICC_ERR_CARD_MUTE
 The Smart Card is mute.
 AR_ICC_ERR_CARD_ABSENT
 No Smart Card is inserted.
 AR_ICC_ERR_CARD_DISCONNECTED
 The Smart Card was deactivated.
 AR_ICC_ERR_CARD_OVERLOAD
 The Smart Card has generated an over current.
 AR_ICC_ERR_CARD_UNSUPPORTED_ATR

The Smart Card ATR is not supported by the chip and is stored in pucIccAtr. The
Smart Card interface has not been de-activated (the bIccATRAutoCheck option not
selected).

 AR_ICC_ERR_BAD_TCK
 The ATR has a bad TCK byte.
 AR_ICC_ERR_BAD_TS
 The ATR has a bad TS byte.
 AR_ICC_ERR_CARD_COMM_PB
 The ATR has either a parity error, an Rx over run or a VCC unstable error.

73S12xxF Software User Guide UG_12xxF_016

76 Rev. 1.50

ICC_PTSNegotiate()
Purpose Transmit the PTS negotiation request to the Smart Card and verify its answer. When

the PTS negotiation succeeds, the 73S12xxF configures its internal protocol
parameters with the negotiated values.

Synopsis AR_ICC_RC ICC_PTSNegotiate (
 IN enum ICC_ID eIccId,
 IN BOOLEAN bIccChangeProtocol,
 IN BOOLEAN bIccChangeSpeed,
 IN BOOLEAN bIccSelectT1Protocol,
 IN unsigned char ucIccFiDi,
 OUT unsigned char *pucIccPTS,
 OUT unsigned int *punIccPTSLength);

Parameters eIccId: Input parameter
Specifies which Smart Card interface is to be activated. Possible values are:

ICC_1ST 0, (Internal)
ICC_2ND 1, (External)
…
ICC_9TH 8 (External)

 bIccChangeProtocol: Input parameter
Specifies whether the protocol is to be changed (TRUE) or not.

 bIccChangeSpeed: Input parameter
Specifies whether the speed is to be changed (TRUE) or not.

 bIccSelectT1Protocol: Input parameter
Specifies whether T=1 protocol is selected (TRUE) or T=0 (FALSE). This parameter
is ignored if bIccChangeProtocol is set to FALSE.

 ucIccFiDi: Input parameter
Specifies the new bit rate and clock adjustment factors to be used (in case
bIccChangeSpeed is set to TRUE)

 pucIccPTS: Output parameter
Contains the PTS answer received from the Smart Card.

 punIccPTSLength: Output parameter
Contains the length of the PTS answer received from the Smart Card. This value
should be in the range 03 to 06.

Return Codes AR_ICC_OK
Successful operation. The PTS negotiation succeeded. The PTS answer from
the Smart Card is stored in pucIccPTS.

 AR_ICC_ERR_CARD_MUTE
The Smart Card does not respond to the PTS negotiation.

 AR_ICC_ERR_CARD_ABSENT
No Smart Card is inserted.

 AR_ICC_ERR_CARD_DISCONNECTED
The Smart Card was removed during the PTS negotiation operation.

 AR_ICC_ERR_CARD_OVERLOAD
The Smart Card has generated an overload.

 AR_ICC_ERR_BAD_PARAM
Incorrect bytes were sent by the card.

 ICC_ERR_PTS_NEGOTIATION
FiDi to negotiate is unacceptable.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 77

ICC_Send()
Purpose Transmit a data command to the Smart Card interface and wais for the answer from

the Smart Card. This function is responsible for the Smart Card command format
analysis which computes the correct command case (1, 2 Short, 3 Short or 4 Short).
The API assumes that the data record size is 255 bytes or less which is why it
supports short cases only.

Synopsis AR_ICC_RC ICC_Send (
 IN enum ICC_ID eIccId,
 IN unsigned int unIccCommandLength,
 IN unsigned char *pucIccCommand,
 OUT unsigned int *punIccResponseLength,
 OUT unsigned char *pucIccResponse,
 OUT unsigned char *pucSW1,
 OUT unsigned char *pucSW2,
 OUT BOOLEAN *pbitStatusJustAfterHeader);

Parameters eIccId: Input parameter
Specifies which Smart Card interface is to be activated. Possible values are:

ICC_1ST 0, (Internal)
ICC_2ND 1, (External)
…
ICC_9TH 8 (External)

 unIccCommandLength: Input parameter
Specifies the number of bytes of data pointed to by puclccCommand.

 pucIccCommand: Input parameter
Specifies the command to be transmitted to the Smart Card interface.

 punIccResponseLength: Output parameter
Specifies the number of bytes of response data pointed to by puclccResponse. (The
length value does not include the status bytes SW1/SW2).

 pucIccResponse: Output parameter
Contains the response of the Smart Card (SW1/SW2 not included).

 pucSW1: Output parameter
Contains the received SW1value.

 pucSW2: Output parameter
Contains the received SW2 value.

 pbStatusJustAfterHeader: Output parameter
This boolean parameter specifies if the status bytes have been received just after the
header (TRUE) or after the data (FALSE) [Useful for the EMV Tests suite]. This
parameter must be taken into account only if the ICC_Configure() command sets the
pbIccWarningStatusBytesManagementT0 bit.

Return Codes AR_ICC_OK

Successful operation: the command was successfully transmitted to the Smart
Card and a valid response was received.

 AR_ICC_ERR_BAD_PARAM
An inconsistent command was specified. The API was unable to compute the
command case value.

 AR_ICC_ERR_CARD_MUTE
The Smart Card is mute.

 AR_ICC_ERR_CARD_ABSENT
No Smart Card is inserted.

 AR_ICC_ERR_CARD_DISCONNECTED
The Smart Card was removed during the activation operation.

73S12xxF Software User Guide UG_12xxF_016

78 Rev. 1.50

 AR_ICC_ERR_WRONG_LEN
Either the command case (T=0) is not correctly formatted, or the buffer size
specified is too small; especially in a Case 2 where the card sometimes responds
with a 61xx with xx > specified buffer size.

 AR_ICC_ERR_CARD_COMM_PB
Too many errors occurred, so the interface has been closed.

 AR_ICC_ERR_CARD_COMM_PB
There is a communication error between the reader and smart card such as a
parity error, a bad response block from the card, a bad EDC, a transmission error
or a bad procedure byte.

ICC_Send_Ext()
Purpose Transmit a data command to the Smart Card interface and wait for the answer. This

API is very similar to the ICC_Send() API except it requires a MaxBuffSize. The
application is responsible for the Smart Card command format analysis to compute
the correct command case (1, 2 Short and Extended, 3 Short and Extended or 4
Short and Extended). Calling ICC_Send_Ext() with a MaxBuffSize of 260 bytes (255
data bytes + 5 header bytes) is equivalent to calling ICC_Send. The ISO 7816-4
standard specifies that setting the first byte (of 3 bytes; or the 5th byte of the
command header bytes) of the data length field equal to 0x00 indicates the extended
cases; whereas JICSAP (version 1.1) specifies the value of this byte to be 0xFF.
This API is written to accept the ISO format so any command with the fifth byte of the
command header having a value of 0x00 will be treated as an extended case.

Synopsis AR_ICC_RC ICC_Send_Ext (
 IN enum ICC_ID eIccId,
 IN unsigned int unIccCommandLength,
 IN unsigned char *pucIccCommand,
 IN unsigned int MaxBuffSize,
 OUT unsigned int *punIccResponseLength,
 OUT unsigned char *pucIccResponse,
 OUT unsigned char *pucSW1,
 OUT unsigned char *pucSW2,
 OUT BOOLEAN *pbStatusJustAfterHeader);

Parameters eIccId: Input parameter
Specifies which Smart Card interface is to be activated. Possible values are:

ICC_1ST 0, (Internal)
ICC_2ND 1, (External)
…
ICC_9TH 8 (External)

 unIccCommandLength: Input parameter
Specifies the number of bytes of data pointed to by puclccCommand.

 pucIccCommand: Input parameter
Specifies the command to be transmitted to the Smart Card interface.

 MaxBuffSize: Input parameter
Specifies the maximum buffer size the reader should reserve to hold the data bytes
sent from the card.

 punIccResponseLength: Output parameter
Specifies the number of bytes of response data pointed to by puclccResponse. (This
length value does not include the status bytes SW1/SW2)

 pucIccResponse: Output parameter
Contains the response of the Smart Card (SW1/SW2 not included).

 pucSW1: Output parameter
Contains the received SW1value.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 79

 pucSW2: Output parameter
Contains the received SW2 value.

 pbStatusJustAfterHeader: Output parameter
This boolean parameter specifies if the status bytes have been received just after the
header (TRUE) or after the data (FALSE) [Useful for the EMV Tests suite]. This
parameter must be taken into account only if the ICC_Configure() command set the
pbIccWarningStatusBytesManagementT0 bit.

Return Codes AR_ICC_OK
Successful operation: the command was successfully transmitted to the Smart
Card and a valid response was received.

 AR_ICC_ERR_BAD_PARAM
An inconsistent command was specified. The API was unable to compute the
command case value.

 AR_ICC_ERR_CARD_MUTE
The Smart Card is mute.

 AR_ICC_ERR_CARD_ABSENT
No Smart Card is inserted.

 AR_ICC_ERR_CARD_DISCONNECTED
The Smart Card was removed during the activation operation.

 AR_ICC_ERR_WRONG_LEN
Either the command case (T=0) is not correctly formatted, or the buffer size
specified is too small; especially in a Case 2 where the card sometimes responds
with a 61xx where xx > specified buffer size.

 AR_ICC_ERR_CARD_COMM_PB
Too many errors with the Smart Card occurred, so the interface has been closed.

 AR_ICC_ERR_CARD_COMM_PB
There is some communication error between the reader and smart card such as
a parity error, a bad response block from the card, a bad EDC, a transmission
error or a bad procedure byte.

ICC_Configure_Ext ()
Purpose Get and Set the configurable protocol parameters of the specified Smart Card

interface. This function was developed to support different conformance tests and
different hardware configuration. This API should be called as the first HAPI call to
make sure the hardware configuration is setup properly according to the hardware
design.

This API is recently added to the CCID USB release version 1.50 (or PCCID release
later than version 3.10). The API is an extension of ICC_Configure() to provide
backward compatibility. Either ICC_Configure_Ext () or ICC_Configure() should be
called, not both. ICC_Configure is exactly the same as ICC_Configure_Ext with
default values for ICC_HWConfigure_t such that: IccHz = ICC_3600KHZ),
DebouncePUEnable = SC_DEBOUNCEON | TRUE and DebouncePDEnable =
SC_DEBOUNCEOFF | FALSE.

Synopsis AR_ICC_RC ICC_Configure_Ext (
 IN enum ICC_ID eIccId,
 IN enum ICC_ADDR IccAddr,
 IN enum ICC_CARDEVENT IccCE,
 IN enum I2C_USRIO eIccUsrIO, // only use this option in the case of

single-8010
 // controlling multiple external slots.
 IN BOOLEAN bIccSetOperation,
 INOUT ICC_Configure_t *ptrConfigure,

73S12xxF Software User Guide UG_12xxF_016

80 Rev. 1.50

 //This is newly added from version 1.50 release
 IN ICC_HWConfigure_t ptrHWConfigure);
 Struct ICC_Configure_t
 {
 INOUT unsigned char ucIccIFSD;
 INOUT unsigned char ucIccNAD;
 //this variable when initialize to 0xFF the GetResponse command will carry the CLA
 //byte of the last C-APDU. UcIccCLA = 0x00 for EMV, = 0xFF for non-EMV
 INOUT unsigned char ucIccCLA;
 INOUT unsigned char ucIccTSTimeOut;
 INOUT unsigned char ucIccRxErrorCounterT0;
 INOUT unsigned char ucIccTxErrorCounterT0;
 INOUT unsigned char ucIccTxErrorCounterT1;
 INOUT unsigned char ucIccConfigurationByte;
 };
 Struct ICC_HWConfigure_t
 {
 IN enum ICC_HZ Icc_Hz; //Smart Card Clock Frequency desired by application.
 IN unsigned char DebouncePUEnable;
 IN unsigned char DebouncePDEnable;
 }

Parameters eIccId: Input parameter
Specifies which Smart Card interface is to be activated. Possible values are:

ICC_1ST 0, (Internal)
ICC_2ND 1, (External)
…
ICC_9TH 8 (External)

 IccAddr: Input parameter
Specifies the address for the external I2C slot.

ICC_I2C0 0x40, (1st external slot)
ICC_I2C1 0x42,
ICC_I2C2 0x44,
…
ICC_I2C7 0x4E; (Last external slot)

 IccCE: Input parameter
Specifies assignment of the INT2/INT3 pins for card events. Possible values are:

ICC_INT2_NONE 0x00,
ICC_INT2_I2C 0x01,
ICC_INT3_I2C 0x02;

 bIccSetOperation: Input parameter
Specifies if the function is called to perform a Set operation (TRUE) or a Get
operation (FALSE).

 pucIccIFSD: Input/output parameter
Specifies the IFSD value to be used (or being used). [Default value is 32, as
specified by ISO/IEC 7816-3]

 pucIccNAD: Input/output parameter
Specifies the NAD value to be used (or being used). [Default value is 00]

 pucIccCLA: Input/output parameter
Specifies the CLA value to be used (or being used) when performing a GetResponse
in case 2 / 4 in the T=0 protocol. Setting pucIccCLA equal to 0xFF indicates that the
GetResponse command shall echo the class byte of the APDU command. [Default
value is 00]

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 81

 punIccTSTimeOut: Input/output parameter
Specifies the maximum delay in clock cycles between the de-assertion of the RST
signal and the leading edge of the TS character of the ATR. [Default value is 40 000]

 pucIccRxErrorCounterT0: Input/output parameter
Specifies the maximum number of errors allowed when the Interface Device is in
reception mode in T=0 protocol.

 pucIccTxErrorCounterT0: Input/output parameter
Specifies the maximum number of errors when the Interface Device is in
transmission mode in T=0 protocol.

 pucIccTxErrorCounterT1: Input/output parameter
Specifies the maximum number of errors when T=1. The most significant nibble
gives the maximum number of R(NA) block transmissions, while the least significant
nibble gives the maximum number of I or S-block retransmissions.

 ucIccConfigurationByte: Input/output parameter
This byte contains the following configuration bits:
[b0] bIccIFSDRequestT1: Input/output. Specifies if the next I-Block will be

preceded by an S(IFS request) (TRUE) or not (FALSE).
[b1] bIccDeactivatedOnTimeOutErrorT1: Input/output. Specifies if the Smart Card

interface is to be de-activated (TRUE) on a TimeOut error. Otherwise, an error
recovery procedure is engaged.

[b2] bIccNADErrorCheckingT1: Input/output. Specifies whether the NAD errors
are to be checked (TRUE) or not (FALSE).

[b3] bIccABORTManagementT1: Input/output. Specifies whether the ABORT
Request is to be managed (TRUE) or if the contacts are to be de-activated on
S(ABORT Request) reception (FALSE).

[b4] bIccRESYNCHManagementT1: Input/output. Specifies whether an
S(RESYNCH Request) command is to be sent when too many errors occur
(TRUE) or if a de-activation sequence is to be initiated (FALSE).

[b5] bIccRetransmitLastBlockAfterRESYNCHT1: Input/output. Specifies whether
the last block in T=1 protocol is to be retransmitted after a resynchronization
occurs or the whole command. [Useful for Microsoft IFDTESTs suite]

[b6] bIccWarningStatusBytesManagementT0: Input/output. Specifies if the IFD
must inform the application level of whether the status bytes have been
received just after the command header transmission or after the command
data transmission (in T=0 protocol). [Useful for EMV Test suites]

[b7] bIccDeactivateOnIFSDNegotiationError: Input/output. Specifies if the Smart
Card interface is to be de-activated on an IFSD negotiation error.

 Icc_Hz: Input parameter
Specifies the desired Smart Card clock frequency. Available values are defined in
the API_Struct_12.h file (LAPI). The default value for both the internal and external
slots is 3.69 MHz.

Care must be taken to make sure the Smart Card Clock is slower than the CPU clock. Since the
CPU has much more overhead to process, a faster Smart Card clock may out run the CPU
resulting in unexpected or undesirable delays.

Since the Smart Card Clock for the external slots (slot ICC_2ND or higher) is driven by the 73S12xxF
single source, all external slots will share the same SC clock configuration. For example, if an application
sets the first external slot to one rate, subsequent calls to this function with a different rate will be ignored.

 DebouncePUEnable: Input parameter
The higher order (most significant) nibble of this byte enables (SC_DEBOUNCEON)
or disables (SC_DEBOUNCEOFF) card debounce. The low order (least significant)
nibble of this byte enables (TRUE) or disables (FALSE) the Pull-Up.

73S12xxF Software User Guide UG_12xxF_016

82 Rev. 1.50

 DebouncePDEnable: Input parameter
The higher order (most significant) nibble of this byte enables (SC_DEBOUNCEON)
or disables (SC_DEBOUNCEOFF) card debounce. The low order (least significant)
nibble of this byte enables (TRUE) or disables (FALSE) the Pull-Down.

Return Codes AR_ICC_OK Successful operation.

ICC_Configure()
Purpose Get / Set the configurable protocol parameters of the specified Smart Card interface.

This function was developed to support different conformance tests. This API should
be called prior to calling ICC_Enable. It is the same as ICC_Configure_Ext, above,
with default values for IccHz (ICC_3600KHZ), DebouncePUEnable =
SC_DEBOUNCEON | TRUE, and DebouncePDEnable = SC_DEBOUNCEOFF | FALSE.

Synopsis AR_ICC_RC ICC_Configure (

 IN enum ICC_ID eIccId,
 IN enum ICC_ADDR IccAddr,
 IN enum ICC_CARDEVENT IccCE,
 IN BOOLEAN bIccSetOperation,
 INOUT ICC_Configure_t *ptrConfigure);
Struct ICC_Configure_t
{
 INOUT unsigned char ucIccIFSD;
 INOUT unsigned char ucIccNAD;

//this variable when initialize to 0xFF the GetResponse command will carry the
CLA //byte of the last C-APDU. UcIccCLA = 0x00 for EMV, = 0xFF for non-EMV

 INOUT unsigned char ucIccCLA;
 INOUT unsigned char ucIccTSTimeOut;
 INOUT unsigned char ucIccRxErrorCounterT0;
 INOUT unsigned char ucIccTxErrorCounterT0;
 INOUT unsigned char ucIccTxErrorCounterT1;
 INOUT unsigned char ucIccConfigurationByte;
};

Parameters eIccId: Input parameter
Specifies which Smart Card interface is to be activated. Possible values are:

ICC_1ST 0, (Internal)
ICC_2ND 1, (External)
…
ICC_9TH 8 (External)

 IccAddr: Input parameter
Specifies the address for the external I2C slot. Possible values are:

ICC_I2C0 0x40, (1st external slot)
ICC_I2C1 0x42,
ICC_I2C2 0x44,
…
ICC_I2C7 0x4E; (Last external slot)

 IccCE: Input parameter
Specifies the assignment of the INT2/INT3 pins for card events. Possible values are:

ICC_INT2_NONE 0x00,
ICC_INT2_I2C 0x01,
ICC_INT3_I2C 0x02;

 bIccSetOperation: Input parameter
Specifies if the function is called to perform a Set operation (TRUE) or a Get
operation (FALSE).

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 83

 pucIccIFSD: Input/output parameter
Specifies the IFSD value to be used (or being used). [Default value is 32 as
specified by ISO/IEC 7816-3]

 pucIccNAD: Input/output parameter
Specifies the NAD value to be used (or being used). [Default value is 00]

 pucIccCLA: Input/output parameter
Specifies the CLA value to be used (or being used) when performing a GetResponse in
case 2 / 4 (in T=0 protocol). Setting pucIccCLA to 0xFF indicates that the GetResponse
command will echo the class byte of the APDU command. [Default value is 00]

 punIccTSTimeOut: Input/output parameter
Specifies the maximum delay in clock cycles between the de-assertion of the RST
signal and the leading edge of the TS character of the ATR. [Default value is 40 000]

 pucIccRxErrorCounterT0: Input/output parameter
Specifies the maximum number of errors allowed when the Interface Device is in
reception mode (in T=0 protocol).

 pucIccTxErrorCounterT0: Input/output parameter
Specifies the maximum number of errors allowed when the Interface Device is in
transmission mode (in T=0 protocol).

 pucIccTxErrorCounterT1: Input/output parameter
Specifies the maximum number of errors in the T=1 protocol. The most significant
nibble gives the maximum number of R(NA) block transmissions, while the least
significant nibble gives the maximum number of I or S-block retransmissions.

 ucIccConfigurationByte: Input/output parameter
This byte contains the following configuration bits:
[b0] bIccIFSDRequestT1: Input/output. Specifies if the next I-Block will be

preceded by an S(IFS request) (TRUE) or not (FALSE).
[b1] bIccDeactivatedOnTimeOutErrorT1: Input/output. Specifies if the Smart Card

interface is to be de-activated (TRUE) on a TimeOut error. Otherwise, an error
recovery procedure is engaged.

[b2] bIccNADErrorCheckingT1: Input/output. Specifies whether the NAD errors
are to be checked (TRUE) or not (FALSE).

[b3] bIccABORTManagementT1: Input/output. Specifies whether the ABORT
Request is to be managed (TRUE) or if the contacts are to be de-activated on
S(ABORT Request) reception (FALSE).

[b4] bIccRESYNCHManagementT1: Input/output. Specifies whether an
S(RESYNCH Request) command is to be sent when too many errors occur
(TRUE) or if a de-activation sequence is to be initiated (FALSE).

[b5] bIccRetransmitLastBlockAfterRESYNCHT1: Input/output. Specifies whether
the last block in T=1 protocol is to be retransmitted after a resynchronization
occurs or the whole command. [Useful for Microsoft IFDTESTs suite]

[b6] bIccWarningStatusBytesManagementT0: Input/output. Specifies if the IFD
must inform the application level of whether the status bytes have been
received just after the command header transmission or after the command
data transmission (in T=0 protocol). [Useful for EMV Test suites]

[b7] bIccDeactivateOnIFSDNegotiationError: Input/output. Specifies if the Smart
Card interface is to be de-activated on an IFSD negotiation error.

Return Codes AR_ICC_OK Successful operation.

ICC_Disable()
Purpose Deactivate the Smart Card interface, slot number is specified by eIccId.

Synopsis AR_ICC_RC ICC_Disable (IN enum ICC_ID eIccId);

73S12xxF Software User Guide UG_12xxF_016

84 Rev. 1.50

Parameters eIccId: Input parameter
Specifies which Smart Card interface is to be activated. Possible values are:

ICC_1ST 0, (Internal)
ICC_2ND 1, (External)
…
ICC_9TH 8 (External)

Return Codes AR_ICC_OK Successful operation.
 AR_ICC_ERR_BAD_PARAM Invalid ICC Slot.

ICC_CheckPresence()
Purpose Return the status of the specified ICC interface.

Synopsis AR_ICC_RC ICC_CheckPresence (IN enum ICC_ID eIccId);

Parameters eIccId: Input parameter.
The lower (least significant) 4-bits specify which Smart Card interface to activate.
Possible values are:

ICC_1ST 0, (Internal)
ICC_2ND 1, (External)
…
ICC_9TH 8 (External).

 The higher (most significant) 4-bits specify whether the card detect polarity is high
(CARD_DET_H) or low (CARD_DET_L). See additional details at the end of the
description of this function.

Return Codes AR_ICC_OK
Successful operation. The Smart card is present and activated.

 AR_ICC_ERR_CARD_ABSENTNo
A Smart Card is present in this interface.

 AR_ICC_ERR_CARD_DISCONNECTED
The Smart Card is present but not activated.

The eIccId parameter is split into two fields: Card Detect Polarity and Card Slot number, by using the
most significant nibble and least significant nibble, respectively. Therefore, the most significant nibble of
the eIccId parameter is used to determine if the Card Detect Polarity is to be configured High or Low.
The constants CARD_DET_H and CARD_DET_L are defined in ICCMgt.h.

Examples:

1. If Card Detect Polarity is to be set to High when a card is inserted, it can be done so by calling:

ICC_Enable(eIccId | CARD_DET_H, bIccATRAutoCheck,etc.).
2. If Card Detect Polarity is to be set to Low when a card is inserted, it can be done so by calling:

ICC_Enable(eIccId | CARD_DET_L, bIccATRAutoCheck,etc.).
3. Calling ICC_Enable (eIccId, bIccATRAutoCheck, etc.) without OR’ing eIccId with CARD_DET_L or

CARD_DET_H (in other words, eIccID <= 0x09) will default to CARD_DET_H.

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 85

4.4 Flash Programming
There are two ways to download a hex file to the 73S12xxF Flash:

1. Using a Teridian Flash Programmer Tool. This tool is packaged separately; contact a Teridian Sales

Representative for more information.
2. Using a Signum Systems ADM51 ICE.

4.5 Test Tools and Certification/compliance Tests
A set of tools is provided with the 73S12xxF development kit to assist the application development.
Teridian uses these tools to perform various certification and compliance tests such as WHQL (aka HCT),
USB 2.0 certification, EMV Level 1 and ISO extended cases testing. These tools include the Smart ATR
and CCID-USB Modules described below.

Smart ATR Test Tool
The Smart ATR tool runs on a PC under Windows 98/2000/XP. This tool is helpful when used in
conjunction with the EMV Tool. It reads an ATR input by the user and translates each byte of the ATR
per the ISO 7816 Specification.

CCID-USB Test Tool
This tool includes ccidtsc-*.sys,ccidtsc-*.inf and CCID-USB.exe. These modules use the USB
communication interface to interface with a PC running Windows XP.

CCID-USB.exe is a Windows XP application used to test the PC/SC APIs as specified by the PCSC
Workgroup and Microsoft. After the ccidusb.hex file is downloaded to Flash and ccidtsc-*.sys and
ccidtsc-*.inf are loaded into a Windows XP Device Manager, any PC/SC application can be run on
Windows XP to send commands to the 73S12xxFdevice. These tools are also used for HCT/DTM and
USB command verifier testing. The following procedure describes the setup for this tool:

1. Program the Flash with ccidusb-*.hex.
2. Connect a USB cable between a PC running Windows XP and the 73S12xxF evaluation board. The

Windows’ ‘Hardware found wizard’ should pop up.
3. Follow the wizard procedure to install the .sys and .inf file on to Windows. A reboot is NOT

necessary.
4. Insert a smart card into slot #1 of the evaluation board.
5. Run CCID-USB.exe to test a command going to the Smart Card.

Another good test application is the Microsoft ifdtest.exe which is part of the HCT test suite. Run this
program in manual mode (ifdtest –m) to observe the 73S12xxF communication to the smart card.
The source code for both applications is included in the release.

The following embedded application source code is available, depending on the CD ROM included with
your product:

• Ccidusb-*.hex: This application uses the USB communication interface and runs any PC/SC or

CCID aware application to interface with the reader. Review the accompanying documentation and
source code for usage and implementation details.

• tscPccid-*.hex: This application uses the Serial/RS232 interface and runs on any PC with a generic
Serial COM driver. Review the accompanying documentation and source code for usage and
implementation details.

73S12xxF Software User Guide UG_12xxF_016

86 Rev. 1.50

4.5.1 EMV LEVEL I Certification Tests
The EMV compliant test suite follows the Payment System Environment specification. There are several
test labs, listed on the www.emvco.com website, qualified to perform these tests.

Currently, there are two available Protocol test suites that can be used to qualify for EMV Level I
compliance. Passing either of these suites will qualify as EMV Level I compliance. The Pseudo-CCID
code links to the two TSC libraries LAPI and HAPI which comply with both tests. However, since each
lab has its own test scripts and the test scripts differ according to the lab’s setup, the application layer
must be written and adapted specifically for each test lab’s requirements. The following subsections
describe the loopback tests that are to be written either on the host side or added to the TSC Pseudo-
CCID firmware.

4.5.1.1 EMV Test Mode

An EMV test (or session) is defined as a Command/Response pair that runs from the Activation of the
card to the Deactivation of the card. A Block Transfer may or may not occur during the session
depending on the card’s ATR response.

The host may set up the EMV PSE test environment via the USB CCID Card Control command (Escape
command). The first parameter byte (B1) of the Escape command must specifically indicate whether a
test mode is invoked and if so, it should be invoked using the MCI, VISA I or VISA II test environment.
Review the Escape command section for details about this test mode.

Following a successful Escape command, the host should start the test by sending the PowerOn
command (ScardConnect). Depending on the status of the ATR (good or bad), the host should send an
empty Block Transfer command without the APDU command (command length = 0). For example: 6F
00 00 00 00… CRC.

The test loopback will be handled by the firmware and upon completion of each test, the firmware will
respond to the host with the status, indicating whether the test session completed with a successful
return code or not. An unsuccessful return code may or may not indicate that the test failed. The test
result (test passed or test failed) is determined only by the card side.

Figure 11 depicts the minimal coding required on the host side to invoke the EMV PSE test environment.

http://www.emvco.com/�

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 87

Initialization

Get Delay Time
(in Secs)

Power-Up Ok
(Good ATR)?

Start Test by sending a
Block Transfer (0x6F)

with 0 Lenth data

EMV Power
Down

Single Shot

Select Single-Shot or
Loopback test?

Delay Time Wait

EMV Power Up

Yes

SingleShot?Yes

No

No

No

No

Escape command is sent
with B1 = MCI(10) or
VISA I (20) or VISA II

(40) in EMVmode

Setup EMV Test
Mode

LoopBack

Figure 11: EMV PSE Test Flow Chart

4.5.1.2 MasterCard Loopback Test

Teridian used the CETECOM test lab in Germany and the FIME test lab in France (both listed on the
www.emvco.com website) for MasterCard Loopback verification. These labs used the MCI test suite for
their EMV Level I qualification test services.

Figure 12 and Figure 13 show the flow of the entire MCI test suite with the coding to be done on both the
host side (invokes the test) and the device side (manages all aspect of the smart card’s EMV test).
These test flows are specific to both the FIME and the Cetecom’s Level I Protocol test scripts. Source
code is also included in the release.

http://www.emvco.com/�

73S12xxF Software User Guide UG_12xxF_016

88 Rev. 1.50

Initialization

EMV Power Up

Power-Up Ok
(Good ATR)?

Select File
1PAY.SYS.DDF01

EMV Power
Down

Yes

Warm Reset OK?No

Yes

No

APDU Exchange

R-APDU < 6
bytes?

Yes

Yes

Wait 5 seconds

Exchange OK?

Yes

No

INS='70'?No

No

Extrac Next C-APDU
from R-APDU

No

Negotiable
Mode? PPS OK?Yes

No

No

Yes

Figure 12: MCI Test Flow Chart with PTS/PPS

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 89

Initialization

EMV Power Up

Power-Up Ok
(Good ATR)?

Select File
1PAY.SYS.DDF01

EMV Power
Down

Yes

Warm Reset OK?No

Yes

No

APDU Exchange

R-APDU < 6
bytes?

Yes
Yes

Wait 5 seconds

Exchange OK?

Yes

No

INS='70'?No

No

Extrac Next C-APDU
from R-APDU

No

Figure 13: MCI Test Flow Chart without PTS/PPS

73S12xxF Software User Guide UG_12xxF_016

90 Rev. 1.50

4.5.1.3 VISA-1 Loopback Test

Teridian used the RFI Global test lab in the UK (listed on the www.emvco.com website) for VISA-1
testing. This lab used the VISA test suite for their EMV Level I qualification test services. Figure 14
shows the VISA-1 test flow which is specific to RFI’s test scripts. Source code for this test is also
included in the release.

Initialization

Enter Delay Time
(in Secs)

Power-Up Ok
(Good ATR)?

SELECT FILE
1PAY.SYS.DDF01

EMV Power
Down

M/m

Any other Key

Warm Reset OK?

Yes

No

APDU Exchange

No

Exchange OK?

End of Record?
or No Record?

Enter (M/m) Multi-
or (anykey) Single

Shot?

Delay Time Wait

EMV Power Up

Negotiable Mode?

No

PPS OK?Yes

SingleShot?Yes

No

No

Yes

No

Yes

READ RECORD
(00 B2 'P1' 0C 00)

Yes
P1 = 01

Increment RECORD
Index (P1)

Yes

No Exchange OK?

Yes

No

Figure 14: VISA-1 Loopback Test Flow Chart

http://www.emvco.com/�

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 91

4.5.2 VISA-2 Loopback Test
Teridian used the ICT-K test lab in Korea (listed on the www.emvco.com website) for VISA-2 loopback
testing. This lab used the VISA test suite version 4.1 for their EMV Level I qualification test services
(details shown in Figure 15). The USB CCID firmware includes the source code that implements this
test.

Initialization

Enter Delay Time
(in Secs)

Power-Up Ok
(Good ATR)?

SELECT FILE
1PAY.SYS.DDF01

EMV Power
Down

M/m

Any other Key

Warm Reset OK?

Yes

No

No

Exchange OK?

End of Record?
or No Record?

Enter (M/m) Multi-
or (anykey) Single

Shot?

Delay Time Wait

EMV Power Up

Negotiable Mode?

No

PPS OK?Yes

SingleShot?Yes

No

No

Yes

No

Yes

READ RECORD
(00 B2 'P1' 0C 00)

Yes
P1 = 01

Increment RECORD
Index (P1)

Yes

No Exchange OK?

No

T-AID Present T-Select AID CommandYes

Yes

Exchange OK?

No

Yes

No

T-Book1 - 12.4 Step 1

T - 00A404000CA00000000310100000000001

Figure 15: VISA-2 Loopback Test Flow Chart

http://www.emvco.com/�

73S12xxF Software User Guide UG_12xxF_016

92 Rev. 1.50

5 Related Documentation
The following 73S12xxF documents are available from Teridian Semiconductor Corporation:

73S1209F Data Sheet
73S1210F Data Sheet
73S1215F Data Sheet
73S1217F Data Sheet
73S12xxF FPGA Evaluation Board User’s Manual
Pseudo-CCID Host GUI Users Guide
Pseudo-CCID Host Application Guide
Pseudo-CCID Serial/RS232 Firmware Application Note
USB-CCID-Host GUI Users Guide
CCID Application Note

6 Contact Information
For more information about Teridian Semiconductor products or to check the availability of the 73S12xxF,
contact us at:

6440 Oak Canyon Road
Suite 100
Irvine, CA 92618-5201

Telephone: (714) 508-8800
FAX: (714) 508-8878
Email: scr.support@teridian.com

For a complete list of worldwide sales offices, go to http://www.teridian.com.

http://www.teridian.com/�

UG_12xxF_016 73S12xxF Software User Guide

Rev. 1.50 93

Revision History

Date Revision Description
12/12/2005 0.01 Preliminary version
11/20/2006 0.80 Updated with the latest change since the last build. This version is still

considered a Beta release.
3/1/2007 1.00 First production build. Includes modules that passed HCT/Microsoft

WHQL, EMV Level I, USB.ORG’s command verifier and goldtree testing.
3/19/2009 1.30 1. Updated to reflect the latest HAPI error return codes.

2. Added a new API (ICC_Configure_Ext) to the HAPI library to support:
a. Setting Different Smart Card clock frequencies for both internal and

external slots. Review this document carefully before implementing
this feature.

b. Enable/disable Pull-up with options to turn card debounce On/Off.
c. Enable/disable Pull-down with options to turn card debounce

On/Off.
4/27/2009 1.40 Added Linux driver for USB_CCID information and Linux Application for

USB DFU Interface information.
Added EMV Level 1 protocol layer information.
Added Section 2.2.6, Build Environment with the USB Boot Loader.

9/14/2009 1.50 Modified the code sample on pages 44 to 48.
Modified the code sample on pages 51 and 52.

	Introduction
	1.1 Acronyms
	1.2 Use of this Document
	1.3 Statement of Compliance

	2 Design Guide
	2.1 Development Environment
	2.1.1 Hardware Requirements
	2.1.2 Software Requirements

	2.2 Software Build Environment
	2.2.1 Software Architecture
	2.2.2 API/Library and Header Files
	2.2.3 External Application
	RS232 / Serial Interface
	USB V2.0 Full Speed Interface

	2.2.4 Embedded Application
	2.2.5 Build Environment with the Serial Boot Loader
	2.2.6 Build Environment with the USB DFU Boot Loader

	3 Testing Environment
	3.1 EMV Level I Compliant Testing
	3.2 CCID Testing
	3.2.1 USB Testing: Microsoft HCT/DTM, and USB Command Verifier
	3.2.2 Serial Testing

	4 Design Reference
	4.1 Memory Map
	4.1.1 Program Memory
	4.1.2 External Data Memory
	4.1.3 Internal Data Memory

	4.2 Low-level API
	4.2.1 Keyboard Driver API – Available with all 73S12xxF Devices
	KEY_Init ()
	KEY_Wait ()

	4.2.2 LCD Driver API – Available with all 73S12xxF Devices
	LCD_Init ()
	LCD_Command ()
	LCD_Data_Write ()
	LCD_Data_Read ()

	4.2.3 LED Driver API – Available with all 73S12xxF Devices
	LED_Config ()
	LED_Write ()
	LED_Read ()

	4.2.4 Real Time Clock API - Available with the 68-pin 73S12xxF
	RTClk_Init ()
	RTCClk_Control ()
	RTClk_Write ()
	RTClk_Read ()
	RTCClk_GetTIME ()
	RTCClk_SetTIME ()

	4.2.5 Smart Card Interface Driver API – Available with all 73S12xxF Devices
	ICC_InitUART()
	ICC_Activate()
	ICC_Status()
	ICC_Tx()
	ICC_Rx()
	ICC_RxLen()
	ICC_RxDone()
	ICC_Deactivate()
	ICC_Mode()
	ICC_Clk_Restart()
	ICC_Clk_Stop()

	4.2.6 SERIAL (RS232) Driver API – Available with all 73S12xxF Devices
	Serial_Init()
	Serial_Tx()
	Serial_CTx()
	Serial_TxLen()
	Serial_TxByte ()
	Serial_Rx()
	Serial_CRx()
	Serial_RxLen()
	Serial_RxByte ()

	4.2.7 USB API – Available with 64K Flash version of the 73S12xxF
	USB_Init()
	USB_Status()
	USB_Stall()
	USB_UnStall()
	USB_IN_1()
	USB_IN_2()
	USB_OUT_1()

	4.2.8 Clock Generator Circuit API – Available with all 73S12xxF Devices
	CPU_Select()

	4.2.9 Power Management API – Available with all 73S12xxF Devices
	PowerON()
	PowerOFF()

	4.2.10 Analog Threshold Management Driver API – Available with all 73S12xxF Devices
	ANALOG_Detect_Enable()
	ANALOG_Detect_Disable()
	ANALOG _Compare()

	4.2.11 Event Management API – Available with all 73S12xxF Devices
	Events_Init()
	Events_Clear()
	Get_Event ()
	Set_Event ()

	4.2.12 Timers API – Available with all 73S12xxF Devices
	Timers_Init ()
	Wait()
	Wait_1ms()
	Add_Timer()
	Add_Timer_Func()
	Remove_Timer()
	Process_Timers()

	4.2.13 User IO API – Available with all 73S12xxF Devices
	USR_INT_Config ()
	USR_INT_Read()
	USER_IO_Config()
	USER_IO_Read()
	USER_IO_Write()

	4.2.14 External Interrupts API – Available with all 73S12xxF Devices
	INT2_Config()
	INT2_Read()
	INT3_Config()
	INT3_Read()

	4.2.15 Special Function Register API – Available with all 73S12xxF Devices
	SFR_Read()
	SFR_Write()

	4.2.16 Flash/Memory API – Available with all 73S12xxF Devices
	Flash_Init()
	memcpy_rx ()
	memcpy_xx ()
	memcpy_xi ()
	memcpy_ix ()
	memcmp_rx ()
	memcmp_xx ()
	memset_x ()
	strlen_x ()
	strlen_r ()
	Log2 ()

	4.2.17 Boot Loader and Passcode Management – Available with the LAPI-*BL.lib Only
	Boot()
	CheckPassCode ()
	SetPassCode ()

	4.2.18 Security Mode Management - Available with the LAPI-*BL.lib Only
	SETSecurity ()
	SECStatus ()

	4.2.19 Other Miscellaneous API Calls – Available with all 73S12xxF Devices
	API_Init()
	Soft_Reset ()

	4.3 High-Level API
	4.3.1 Smart Card Control
	ICC_Enable() or ICC_Enable_Ext ()
	ICC_WarmReset()
	ICC_PTSNegotiate()
	ICC_Send()
	ICC_Send_Ext()
	ICC_Configure_Ext ()
	ICC_Configure()
	ICC_Disable()
	ICC_CheckPresence()

	4.4 Flash Programming
	4.5 Test Tools and Certification/compliance Tests
	4.5.1 EMV LEVEL I Certification Tests
	4.5.1.1 EMV Test Mode
	4.5.1.2 MasterCard Loopback Test
	4.5.1.3 VISA-1 Loopback Test

	4.5.2 VISA-2 Loopback Test

	5 Related Documentation
	6 Contact Information
	Revision History

