

Close supervision

Simplicity of use

Control relays

Instinctive control

$(1$Close-up protection for total availability of equipment!

By installing a control relay, the user can be informed of abnormal operating conditions, and is therefore able to take the necessary action to correct the fault by stopping the machine briefly before expensive breakdowns occur.

A major challenge for industry is to improve the availability of production tools, for which the close supervision and protection offered by C-Lynx is the perfect solution. It therefore makes sense for every device to be monitored by a C-Lynx control relay. Each device or machine would therefore be able to complete its allotted task at the appropriate time.

a control relay in your equipment

All anomalies are detected!

Control relays monitor and detect abnormal operating conditions of an electrical or physical value (voltage, current, phase, level) in any device, even the most specialised (hoist, machine, motor, conveyor, etc).
If an anomaly is detected, the control relays emit a visible signal and trigger a change in the output contacts.

(3) Optimise continuity of service

In industrial and commercial installations, every device should be monitored by a C-Lynx control relay so as to optimise continuity of service.
The control relay enables the operator to initiate maintenance operations or corrective actions to avoid production shutdowns.

Result:
Improved operation and productivity for your installation!

By using control relays, you optimise your production management and reduce incidents which could adversely affect your productivity.

C-Lynx,

control relays dedicated

Supervision of motors, lifts, hoists, conveyor belts, packaging and air extraction, pumping... from standard products to bespoke products, C-Lynx control relays adapt to a multitude of applications, to meet all your requirements.

1 Supervision of Motors

On 3-phase supplies, C-Lynx control relays check phase sequence and phase failure preventing a change in direction of rotation, and single-phase operating modes. They therefore avoid overheating faults linked to phase imbalance.

Temperature control in lifts

C-Lynx temperature control relays monitor the ambient temperature of service rooms or lift pulley rooms, to check that it remains with the statutory limits (between $5^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$) in compliance with standard EN 81

Heating, cooling, air conditioning or extraction... C-Lynx control relays stop the motor to protect the unit in the event of current, phase and/or supply voltage faults.

to your applications

(4.) Pump and level control

Agricultural applications, watering, irrigation, drying, pressure surge, lift pumps and fire pumps, distribution and treatment of water, etc. C-Lynx control relays are used to manage and protect equipment by current measurement and phase monitoring. C-Lynx control relays can also be used to control emptying and filling levels.

(5) Load monitoring

Conveying, packaging, assembly or bottling lines, grinders, crushers, etc. C-Lynx control relays monitor overloads on driving motors and detect any jamming.

Speed monitoring

Whatever the application, C-Lynx control relays react and alert the operator if the machine operating rate is abnormally high or low.

> C-Lynx control relays can adapt to both standard and specialist applications.

■ Pumps

C-Lynx comporeme

C-Lynx, all functions ready

1 The strong points of C-Lynx

- The combination of several functions in the same housing optimises your wiring time and simplifies installation.
- The new 17.5 mm modular format considerably reduces the dimensions of your equipment.
- The Easy to use function: the visual LED interface informs you of operating faults in your installation and any errors made when setting the parameters.
- The new-generation built-in multivoltage power supplies optimise the number of parts and simplify product selection.
- Eco-design: C-Lynx control relays have been developed in accordance with the principles of eco-design (choice of materials, manufacturing process, energy consumption and component recycling). The recycling rate for these control relays is higher than that imposed by the WEEE (Waste Electrical and Electronic Equipment) European directive.
- C-Lynx control relays comply with all the required electrical standards and are easily integrated in your electrical equipment.

to adapt to your equipment

Custom'able label

Crouzet can satisfy all your automation requirements, from custom components to the most dedicated product. Throughout
the world Crouzet provides technical and industrial expertise to ensure that its products are perfectly customised and adapted for integration in any of your equipment.
This is why Crouzet guarantees
customisation or adaptation of the whole range of C-Lynx control relays.

Crouzet offers you the following adaptations:

- Adaptation of the level of regeneration for phase failure checks,
- Conversion of adjustable products into products with a fixed threshold,
- Adaptation of input voltage ranges and measurement ranges,
- Modification of timing ranges and addition of fixed values, etc,
- Possibility of customising colours and labelling, etc.
- Ease of reading

- Simplified connections

Adaptability:

C-Lynx's trump card

The Crouzet design office can create control relays tailored to suit your needs, based on your specification.

C-Lynx comporme

C-Lynx by Crouzet: a complete collection of

0 New features of the C-Lynx range

■ Positive logic output also indicating loss of power supply,

- True RMS measurement: even if the sine waves are distorted, the measurement is correct,
- Reduction in the number of housing sizes: with a 17.5 mm and 35 mm modular compact format, C-Lynx control relays can be integrated more easily in industrial and commercial cabinets,
- Built-in universal power supplies: a version with power supply for single-phase products and a self-powered version for 3-phase products,
- Adjustable time delay on crossing thresholds, thus avoiding transient faults,
- Settings can be protected by fitting a sealable cover,
- Very clear display of control status via LEDs.

control relays

2. A complete range of standard control relays

To satisfy all your automation requirements, Crouzet offers you an extensive range of standard control relays.

■ Phase control relays (MWS, MWS2, MWG, MWU, MWA, MWUA, HWUA, H3US, H3USN, M3US) :

- presence and regeneration, phase sequence, phase, balance and level of asymmetry (or balance),
- adjustment of voltage thresholds.

■ Voltage control relays (MUS, MUSF, HUL, HUH) :

- overvoltage, undervoltage control,
- self-powered versions.
- Current control relays (MIC, HIL, HIH) :
- overcurrent and undercurrent control,
- version with built-in current transformer.
- Frequency control relays (HHZ) :
- Overfrequency and underfrequency control of the 50 or 60 Hz AC signal.
- Pump control relays (HPC) :
- control of single-phase or 3-phase pumps,
- dry run and overload protection,
- 3-phase control.
- Level control relays (HNM, MNS, HNE) :
- automation of filling and emptying cycles,
- high or low level information,
- check for presence of a conductive or non-conductive liquid by temperature probe or discrete sensor.
■ Speed control relays (HSV) :
- monitoring of pulse rates,
- overspeed and underspeed control, rotation or movement control.
- Lift temperature control relays (HT81, HT81-2, HWT81) :
- temperature monitoring in machine rooms and lift pulley rooms in accordance with standard EN 81,
- version with built-in phase control,
- phase failure with regeneration up to 70%.

■ Phase and temperature control relays (HWTM, HWTM2) :

- 3-phase network control,
- motor temperature control with PTC probe test and memory function on temperature control.

Designation	Part number	Description	Operating conditions

Phase control

MWS	84873020	Phase failure and phase sequence	-
MWS2	84873021	Phase failure and phase sequence	-
MWG	84873022	Phase failure and phase sequence	Regeneration 70\% of Un
MWU	84873023	Phase failure and phase sequence	Regeneration 70\% of Un
		Undervoltage	$\begin{aligned} & \text { Phase/phase Un: } \\ & \text { 208/220/380/400/415/440/480 V AC } \end{aligned}$
MWA	84873024	Phase failure and phase sequence	Regeneration 70\% of Un
		Asymmetry	-
MWUA	84873025	Overvoltage/undervoltage (window)	Phase/phase Un: 208/220/380/400/415/440/480 V AC
		Asymmetry	-
		Phase failure and phase sequence	-
HWUA	84873026	Overvoltage	$\begin{array}{\|l\|} \hline \text { Phase/phase Un: } \\ \text { 220/380/400/415/440/480 V AC } \\ \hline \end{array}$
		Asymmetry	-
		Undervoltage	$\begin{aligned} & \text { Phase/phase Un: } \\ & \text { 220/380/400/415/440/480 V AC } \end{aligned}$
		Phase failure and phase sequence	-
H3US	84873220	Phase failure	-
		Undervoltage	$\begin{aligned} & \text { Phase/phase Un: } \\ & \text { 220/380/400/415/440/480 V AC } \end{aligned}$
		Overvoltage	$\begin{aligned} & \text { Phase/phase Un: } \\ & \text { 220/380/400/415/440/480 V AC } \end{aligned}$
H3USN	84873221	Loss of phase and neutral	-
		Undervoltage	$\begin{aligned} & \text { Phase/neutral Un: } \\ & \text { 120/127/220/230/240/260/277 V AC } \end{aligned}$
		Overvoltage	$\begin{aligned} & \text { Phase/neutral Un: } \\ & \text { 120/127/220/230/240/260/277 V AC } \end{aligned}$
M3US	84873222	Phase failure	-
		Undervoltage	Phase/phase Un: 208/220/380/400/415/440/480 V AC
		Overvolage	Phase/phase Un: 208/220/380/400/415/440/480 V AC

Voltage control

MUS12DC	84872140	Undervoltage or overvoltage	-
MUS80ACDC	84872141	Undervoltage or overvoltage	-
MUS260ACDC	84872142	Undervoltage or overvoltage	-
MUSF80ACDC	84872151	Overvoltage/undervoltage (window)	-
MUSF260ACDC	84872152	Overvoltage/undervoltage (window)	-
HUL	84872120	Undervoltage or overvoltage	-
HUH	84872130	Undervoltage or overvoltage	-

Current control

MIC	84871122
HIL	84871120
HIH	84871130

	Overcurrent (or undercurrent)	Via
	Undercurrent or overcurrent	-
	Undercurrent or overcurrent	-

Control values	Supply voltage	Time delay	Output relay
208-480 V AC 50/60 Hz	Self-powered 208-480 V AC	-	1 single changeover relay (1 SPDT) 5 A
208-440 V AC 50/60 Hz	Self-powered 208-440 V AC	-	2 single changeover relay (2 SPDT) 5 A
208-480 V AC 50/60 Hz	Self-powered 208-480 V AC	-	1 single changeover relay (1 SPDT) 5 A
208-480 V AC 50/60 Hz			
-20% to -2\%	Self-powered 208-480 V AC	0.1 s to 10 s	1 single changeover relay (1 SPDT) 5 A
208-480 V AC 50/60 Hz	Self-powered 208-480 V AC	0.1 s to 10 s	1 single changeover relay (1 SPDT) 5 A
5\% to 15\%			
$\begin{aligned} & -20 \% \text { to }-2 \% \\ & +2 \% \text { to }+20 \% \end{aligned}$			
5\% to 15\%	Self-powered 208-480 V AC	0.1 s to 10 s	1 single changeover relay (1 SPDT) 5 A
208-480 V AC 50/60 Hz			
+2\% to +20\%			
5\% to 15\%	f-powered 220-480 V AC	0.1 s to 10 s	1 double changeover relay
-20% to -2\%			(1 DPDT) $2 \times 5 \mathrm{~A}$
220-480 V AC 50/60 Hz			
220-480 V AC 50/60 Hz			
-20% to -2\%	Self-powered 220-480 V AC	0.3 s to 30 s	2 single changeover relay (2 SPDT) 5 A
+2\% to +20\%			
120-277 V AC 50/60 Hz			
-20% to -2\%	Self-powered 120-277 V AC	0.3 s to 30 s	2 single changeover relay (2 SPDT) 5 A
$+2 \%$ to $+20 \%$			
208-480 V AC 50/60 Hz			
-20% to -2\%	Self-powered 208-480 V AC	0.3 s to 30 s	1 single changeover relay (1 SPDT) 5 A
+2\% to +20\%			

9-15 V DC 20-80 V AC/DC
65-260 V AC/DC
20-80 V AC/DC
$65-260 \mathrm{~V}$ AC/DC
0.2 V to 2 V

1 V to 10 V
6 V to 60 V
15 V to 150 V
30 V to 300 V
60 V to 600 V

Self-powered 12 V DC	0.1 s to 10 s	1 single changeover relay (1 SPDT) 5 A
Self-powered 24-48 V AC/DC	0.1 s to 10 s	1 single changeover relay (1 SPDT) 5 A
Self-powered 110-240 V AC/DC	0.1 s to 10 s	1 single changeover relay (1 SPDT) 5 A
Self-powered 24-48 V AC/DC	0.1 s to 10 s	1 single changeover relay (1 SPDT) 5 A
Self-powered 110-240 V AC/DC	0.1 s to 10 s	1 single changeover relay (1 SPDT) 5 A
24-240 V AC/DC 50/60 Hz	0.1 s to 3 s	1 double changeover relay (1 DPDT) $2 \times 5 \mathrm{~A}$
24-240 V AC/DC 50/60 Hz	0.1 s to 3 s	1 double changeover relay (1 DPDT) $2 \times 5 \mathrm{~A}$

2 A to 20 A
2 mA to 20 mA
10 mA to 100 mA
50 mA to 500 mA
0.1 A to 1 A
0.5 A to 5 A

1 A to 10 A

$24-240 \mathrm{~V} \mathrm{AC/DC} \mathrm{50/60} \mathrm{~Hz}$	-	1 sin
$24-240 \mathrm{~V} \mathrm{AC/DC} \mathrm{50/60} \mathrm{~Hz}$	0.1 s to 3 s	1 d $(1 \mathrm{D}$
$24-240 \mathrm{~V} \mathrm{AC/DC} \mathrm{50/60} \mathrm{~Hz}$	0.1 s to 3 s	1 d $(1 \mathrm{D}$

1 single changeover relay (1 SPDT) 5 A
1 double changeover relay
(1 DPDT) $2 \times 5 \mathrm{~A}$
:---
(1 DPDT) $2 \times 5 \mathrm{~A}$

Selection guide

Temperature control in lifts according to EN 81

HT81	84874110
HT81-2	84874120
HWT81	84874130

Undertemperature and overtemperature (window)	-
Undertemperature and overtemperature (window)	-
Undertemperature and overtemperature (window)	-
Phase failure and phase sequence	Regeneration 70\% of Un

Pump and level control

Temperature and phase control

Control values	Supply voltage	Time delay	Output relay
40 HZ to 60 Hz 50 HZ to 70 Hz	$120-277 \vee \mathrm{AC} \mathrm{50/60} \mathrm{~Hz}$	0.1 s to 10 s	2 single changeover relay $(2 \mathrm{SPDT}) 5 \mathrm{~A}$

250Ω to $5 \mathrm{~K} \Omega$ $5 \mathrm{~K} \Omega$ to $100 \mathrm{~K} \Omega$ $50 \mathrm{~K} \Omega$ to $1 \mathrm{M} \Omega$	$24-240 \mathrm{VAC/DC} 50 / 60 \mathrm{~Hz}$	0.1 s to 5 s	1 double changeover relay $(1 \mathrm{DPDT}) 2 \times 5 \mathrm{~A}$
Contact input for discrete sensor	$24-240 \mathrm{VAC/DC} 50 / 60 \mathrm{~Hz}$	0.1 s to 5 s	1 single changeover relay (1 SPDT) 5 A
Input for discrete sensor: Contact/PNP/NPN	$24-240 \mathrm{VAC/DC} 50 / 60 \mathrm{~Hz}$	0.1 s to 5 s	1 single changeover relay (1 SPDT) 5 A

Time between controlled pulses:
0.05 s to 0.5 s
0.1 s to 1 s
0.5 s to 5 s

1 s to 10 s 0.1 mn to 1 mn
0.5 mn to 5 mn

1 mn to 10 mn

3-wire PT100 input
Low threshold: $-1^{\circ} \mathrm{C}$ to $+11^{\circ} \mathrm{C}$ High threshold: $+34^{\circ} \mathrm{C}$ to $+46^{\circ} \mathrm{C}$ 3 -wire PT100 input Low threshold: $-1^{\circ} \mathrm{C}$ to $+11^{\circ} \mathrm{C}$ High threshold: $+34^{\circ} \mathrm{C}$ to $+46^{\circ} \mathrm{C}$ 3 -wire PT100 input
Low threshold: $-1^{\circ} \mathrm{C}$ to $+11^{\circ} \mathrm{C}$
High threshold: $+34^{\circ} \mathrm{C}$ to $+46^{\circ} \mathrm{C}$
$208-480$ V AC $50 / 60 \mathrm{~Hz}$

$24-240 \mathrm{~V} \mathrm{AC/DC} \mathrm{50/60} \mathrm{~Hz}$	1 s to 10 s	1 single changeover relay (1 SPDT) 5 A
$24-240 \mathrm{~V}$ AC/DC $50 / 60 \mathrm{~Hz}$	1 s to 10 s	2 single contact relays (NO) $(2$ SPST) 5 A
$24-240 \mathrm{~V} \mathrm{AC/DC} 50 / 60 \mathrm{~Hz}$	1 s to 10 s	2 single contact relays (NO) $(2$ SPST) 5 A

230 V AC 50/60 Hz
208-480 V AC 50/60 Hz

1 A to 10 A AC

Self-powered (1 or 3 phases)

1 s to 60 s on power-up 0.1 s to 10 s on threshold crossing

1 single changeover relay (1 SPDT) 5 A (2 SPST) 5 A

230 V AC 50/60 Hz	Self-powered (1 or 3 phases)	1 s to 60 s on power-up 0.1 s to 10 s on threshold crossing	1 single changeover relay (1 SPDT) 5 A
208-480 V AC 50/60 Hz			
1 A to 10 A AC			

208-480 V AC 50/60 Hz	24-240 V AC/DC	-	2 single contact relays (NO) (2 SPST) 5 A
Thermistor with automatic reset			
208-480 V AC 50/60 Hz	24-240 V AC/DC	-	2 single contact relays (NO) (2 SPST) 5 A
Thermistor with automatic reset			
-			
-			

Lynx completere

Contents

Phase control

Single function phase control relay - 17.5 mm

Control of 3-phase networks: phase sequence, total
phase failure
Multi-voltage from 3×208 to $3 \times 480 \mathrm{~V} \sim$
Controls its own supply voltage
True RMS measurement
LED status indication

Part numbers		
	MWS	MWS2
Function	Phase sequence and failure	Phase sequence and failure
Nominal voltage (V)	$3 \times 208 \rightarrow 3 \times 480 \mathrm{~V}$ ~	$3 \times 208 \rightarrow 3 \times 440 \mathrm{~V}$ ~
Output	1 single pole changeover relay	2 single pole changeover relay
Part numbers	84873020	84873021

Product adaptations

Customisable colours and labels

Accessories		
Description		Code
Removable sealable cover for 17.5 mm casing		84800000
General characteristics		
	MWS	MWS2
Supply		
Supply voltage Un	$3 \times 208 \rightarrow 3 \times 480 \mathrm{~V}$ ~ *	$3 \times 208 \rightarrow 3 \times 440$ V *
Operating range	$183 \rightarrow 528 \mathrm{~V}$ ~	$183 \rightarrow 484 \mathrm{~V}$ ~
Inputs and measuring cicuit		
Measurement ranges	$183 \rightarrow 528$ V	$183 \rightarrow 484$ V
General characteristics		
Weight	80 g	85 g
Comments		
	* 3-phase mains with earth	* 3-phase mains with earth

	MWS / MWS2
Supply	
Voltage supply tolerance	-12\% / +10\%
~ supply voltage frequency	$50 / 60 \mathrm{~Hz} \pm 10 \%$
Galvanic isolation of power supply/measurement	No
Power consumption at Un	1.8 VA in \sim
Immunity from micro power cuts	60 ms
Inputs and measuring cicuit	
Guaranteed phase failure detection threshold	$<100 \mathrm{~V}$ ~
Frequency of measured signal	$50 \rightarrow 60 \mathrm{~Hz} \pm 10 \%$
Timing	
Delay on pick-up	500 ms
Alarm on delay time max.	100 ms
Output	
Type of contacts	No cadmium
Maximum breaking voltage	$250 \mathrm{~V} \sim 1=-$
Max. breaking current	$5 \mathrm{~A} \sim$
Min. breaking current	$10 \mathrm{~mA} / 5 \mathrm{~V}=-$
Electrical life (number of operations)	$\begin{aligned} & 1 \times 10^{5} \mathrm{MWS} \\ & 1 \times 10^{4} \mathrm{MWS} 2 \end{aligned}$
Breaking capacity (resistive)	1250 VA ~
Maximum rate	360 operations/hour at full load
Operating categories acc. to IEC 60947-5-1	AC12, AC13, AC14, AC15, DC12, DC13
Mechanical life (operations)	30×10^{6}
Insulation	
Nominal insulation voltage IEC 60664-1	400 V
Insulation coordination (IEC 60664-1 / 60255-5)	Overvoltage category III: degree of pollution 3
Rated impulse withstand voltage IEC 60664-1/60255-5	$4 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$
Dielectric strength IEC 60664-1/60255-5	2 kV AC 50 Hz 1 min .
Insulation resistance IEC 60664-1 / 60255-5	$>500 \mathrm{M} \Omega / 500 \mathrm{~V}=-$
General characteristics	
Output relay status indication	Yellow LED
Casing	17.5 mm
Mounting	On 35 mm symmetrical DIN rail, IEC/EN 60715
Mounting position	All positions
Material: enclosure plastic type VO to UL94 standard	Incandescent wire test according to IEC 60695-2-11 \& NF EN 60695-2-11
Protection (IEC 60529)	Terminal block: IP20 Casing: IP30
Connecting capacity IEC 60947-1	Rigid: $1 \times 4^{2}-2 \times 2.5^{2} \mathrm{~mm}^{2}$ 1×11 AWG -2×14 AWG Flexible with ferrules: $1 \times 2.5^{2}-2 \times 1.5^{2} \mathrm{~mm}^{2}$ 1×14 AWG -2×16 AWG
Max. tightening torques IEC 60947-1	$0.6 \rightarrow 1 \mathrm{Nm} / 5.3 \rightarrow 8.8$ Lbf.In
Operating temperature IEC 60068-2	$-20 \rightarrow+50^{\circ} \mathrm{C}$
Storage temperature IEC 60068-2	$-40 \rightarrow+70^{\circ} \mathrm{C}$
Humidity IEC 60068-2-30	$2 \times 24 \mathrm{hr}$ cycle 95\% RH max. without condensation $55^{\circ} \mathrm{C}$
Vibrations according to IEC/EN60068-2-6	$10 \rightarrow 150 \mathrm{~Hz}, \mathrm{~A}=0.035 \mathrm{~mm}$
Shocks IEC 60068-2-6	5 g
Standards	
Marking	CE (LVD) 73/23/EEC - EMC 89/336/EEC
Product standard	NF EN 60255-6 / IEC 60255-6 / UL 508 / CSA C22.2 N 14
Electromagnetic compatibility	Immunity EN 61000-6-2/IEC 61000-6-2 Emission EN 61000-6-4/EN 61000-6-3 IEC 61000-6-4/IEC 61000-6-3 Emission EN 55022 class B
Certifications	UL, CSA, GL pending
Conformity with environmental directives	RoHS, WEEE

Principles

Overview

3-phase network control relays monitor the sequence of phases L1, L2, L3 and failure of one or more phases. LEDs are used for signalling.

MWS-MWS2 - Phase failure and sequence

(1) MWS: Relay R

MWS2: Relays R1/R2
(2) Response time on appearance of a fault (Tr)

Operating principle

MWS-MWS2: Phase controller
The relay monitors its own supply voltage.
The relay controls:

- correct sequencing of the three phases,
- total failure of one of the three phases.

When the phase sequence and voltages are correct (>183 V \sim), the output relay (s) are closed and the yellow LED is lit.
In the event of a phase sequence or total phase failure fault (detected when one of the voltages drops below 100 V), the relay opens instantly and its LED is extinguished.

When the unit is powered up with a measured fault, the relay stays open.

Dimensions (mm)

MWS-MWS2

Connections

Phase control

Multi-function phase control relay - 17.5 mm

- Control of 3-phase networks: phase sequence, phase failure, imbalance (asymmetry), over and undervoltage
- Range includes mono-function product and multifunction product
■ Multi-voltage from 3×208 to 3×480 V~
\square Controls its own supply voltage
- True RMS measurement
- LED status indication

MWG

Part numbers

Type	Functions	Nominal voltage (V)	Code
MWG	Phase sequence and failure	$3 \times 208 \rightarrow 3 \times 480 \mathrm{~V} \sim$	$\mathbf{8 4 8 7 3 0 2 2}$
MWU	Phase sequence, failure, undervoltage	$3 \times 208 \rightarrow 3 \times 480 \mathrm{~V} \sim$	84873023
MWA	Phase sequence, failure and imbalance	$3 \times 208 \rightarrow 3 \times 480 \mathrm{~V} \sim$	84873024
MWUA	Phase sequence, failure, imbalance, under and overvoltage in window mode	$3 \times 208 \rightarrow 3 \times 480 \mathrm{~V} \sim$	84873025
Product adaptations			

[^0]| Accessories |
| :--- |
| Description
 Removable sealable cover for 17.5 mm casing
 General characteristics
 Supply
 Supply voltage Un
 Voltage supply tolerance
 Operating range
 \sim MWG / MWU / MWA / MWUA
 Galvanic isolation of power supply/measurement
 Power consumption at Un
 Immunity from micro power cuts |

General characteristics

Inputs and measuring cicuit	
Measurement ranges	$183 \rightarrow 528$ V
Selection of phase-phase nominal voltage Un	208-220-380-400-415-440-480 V
Frequency of measured signal	$50 \rightarrow 60 \mathrm{~Hz} \pm 10 \%$
Max. measuring cycle time	$150 \mathrm{~ms} /$ True RMS measurement
Voltage threshold adjustment	$2 \rightarrow 20 \%$ of selected Un (-2 to -12\% across the $3 \times 208 \mathrm{~V} \sim$ range / -2 to -17% across the $3 \times 220 \mathrm{~V}$ ~ range $/ 2$ to 10% across the $3 \times 480 \vee \sim$ range)
Voltage threshold hysteresis	2\% of fixed Un
Asymmetry threshold hysteresis	2\% of fixed Un
Asymmetry threshold adjustment	5 to 15\% of fixed Un
Display precision	$\pm 3 \%$ of the displayed value
Repetition accuracy with constant parameters	$\pm 0.5 \%$
Measuring error with voltage drift	< 1% across the whole range
Measuring error with temperature drift	$<0.05 \% /{ }^{\circ} \mathrm{C}$
Maximum regeneration (phase failure)	70\%
Timing	
Delay on threshold crossing	0.1 to $10 \mathrm{~s}(0,+10 \%)$
Repetition accuracy with constant parameters	$\pm 3 \%$
Reset time	1500 ms
Delay on pick-up	500 ms
Alarm on delay time max.	< 200 ms
Output	
Type of output	1 single pole changeover relay
Type of contacts	No cadmium
Maximum breaking voltage	250 V ~
Max. breaking current	$5 \mathrm{~A} \sim$
Min. breaking current	$10 \mathrm{~mA} / 5 \mathrm{~V}=-$
Electrical life (number of operations)	1×10^{5}
Breaking capacity (resistive)	1250 VA ~
Maximum rate	360 operations/hour at full load
Operating categories acc. to IEC 60947-5-1	AC 12, AC 13, AC 14, AC 15, DC 12, DC 13, DC 14
Mechanical life (operations)	30×10^{6}
Insulation	
Nominal insulation voltage IEC 60664-1	400 V
Insulation coordination (IEC 60664-1 / 60255-5)	Overvoltage category III: degree of pollution 3
Rated impulse withstand voltage IEC 60664-1/60255-5	$4 \mathrm{KV}(1.2 / 50 \mu \mathrm{~s})$
Dielectric strength IEC 60664-1/60255-5	2 kV AC 50 Hz 1 min
Insulation resistance IEC 60664-1 / 60255-5	$>500 \mathrm{M} \Omega / 500 \mathrm{~V}=-$
General characteristics	
Display power supply	Green LED
Display relay	Yellow LED - This LED flashes during the threshold delay
Casing	17.5 mm
Mounting	On 35 mm symmetrical DIN rail, IEC/EN 60715
Mounting position	All positions
Material: enclosure plastic type VO to UL94 standard	Incandescent wire test according to IEC 60695-2-11 \& NF EN 60695-2-11
Protection (IEC 60529)	Terminal block: IP20 Casing: IP30
Weight	80 g
Connecting capacity IEC 60947-1	Rigid: $1 \times 4^{2}-2 \times 2.5^{2} \mathrm{~mm}^{2}$ 1×11 AWG -2×14 AWG Flexible with ferrules: $1 \times 2.5^{2}-2 \times 1.5^{2} \mathrm{~mm}^{2}$ 1×14 AWG -2×16 AWG
Max. tightening torques IEC 60947-1	$0.6 \mathrm{Nm} \rightarrow 1 / 5.3 \rightarrow 8.8$ Lbf. In
Operating temperature IEC 60068-2	$-20 \rightarrow+50^{\circ} \mathrm{C}$
Storage temperature IEC 60068-2	$-40 \rightarrow+70^{\circ} \mathrm{C}$
Humidity IEC 60068-2-30	$2 \times 24 \mathrm{hr}$ cycle 95\% RH max. without condensation $55^{\circ} \mathrm{C}$
Vibrations according to IEC/EN60068-2-6	$10 \rightarrow 150 \mathrm{~Hz}, \mathrm{~A}=0.035 \mathrm{~mm}$
Shocks IEC 60068-2-6	5 g
Standards	
Marking	CE (LVD) 73/23/EEC - EMC 89/336/EEC
Product standard	NF EN 60255-6 / CEI 60255-6 / UL 508 / CSA C22.2 ${ }^{\circ} 14$
Electromagnetic compatibility	Immunity EN 61000-6-2/IEC 61000-6-2 Emission EN 61000-6-4/EN 61000-6-3 IEC 61000-6-4/IEC 61000-6-3 Emission EN 55022 class B
Certifications	UL, CSA, GL pending
Conformity with environmental directives	RoHS, WEEE
Comments	
	* 3-phase mains with earth

Phase control

Principles

Overview

3-phase network control relays monitor:

- The correct sequence of phases L1, L2, L3
- Total phase failure
- Undervoltage and overvoltage from 2 to 20% of Un
- Asymmetry rate from 5 to 15% of Un
- LEDs are used for fault signalling.

If a fault persists for longer than the threshold crossing delay configured by the user, the output relay opens and the LED R is extinguished.

MWG - Phase failure and sequence (with regeneration)

MWU - Phase failure and sequence (with regeneration)

(1) Phase L1

(2) Phase L2
(3) Phase L3
(4) Relay

MWU - Undervoltage

(1) Hysteresis
(2) Undervoltage
(3) Phases L1, L2, L3
(4) Relay
(5) Delay on threshold crossing (Tt)

Operating principle

MWG: Phase controller with voltage regeneration

Voltage selector switch:

Set the selector switch to the 3-phase network voltage Un.
The position of this selector switch is only taken into account when the unit is powered up. If the switch position changes while the unit is operating, all the LEDs flash but the product continues to work normally with the voltage selected on energisation prior to the change of position.
The LEDs return to their normal state if the switch is reset to its initial position defined before the last energisation.

The relay monitors its own supply voltage.

The relay controls:

- correct sequencing of the three phases
- failure of one of the three phases (U measured < $0.7 \times \mathrm{Un}$).

In the event of a phase sequence or failure fault, the relay opens instantaneously.
When the unit is powered up with a measured fault, the relay stays open.

Operating principle

MWU: Phase controller with voltage and undervoltage regeneration

Voltage selector switch:

Set the selector switch to the 3-phase network voltage Un.
The position of this selector switch is only taken into account when the unit is powered up. If the switch position changes while the unit is operating, all the LEDs flash but the product continues to work normally with the voltage selected on energisation prior to the change of position.
The LEDs return to their normal state if the switch is reset to its initial position defined before the last energisation.

The relay monitors its own supply voltage.

The relay controls:

- correct sequencing of the three phases
- failure of one of the three phases (U measured $<0.7 \times \mathrm{Un}$).
- undervoltage, adjustable from -2 to -20% of Un (-2 to -12% across the $3 \times 208 \mathrm{~V}$ range and -2 to 17% for the $3 \times 220 \mathrm{~V}$ range due to the minimum voltage $183 \mathrm{~V} \sim$).
In the event of a phase sequence or failure fault, the relay opens instantaneously.
In the event of a voltage fault, the relay opens at the end of the time delay set by the user. When the unit is powered up with a measured fault, the relay stays open.

Principles

MWA - Failure, phase sequence and asymmetry

\section*{\section*{Operating principle

 MWA: Phase contro

 MWA: Phase contro
 \section*{Voltage selector switch:}}

Set the selector switch to the 3-phase network voltage Un.
The position of this selector switch is only taken into account when the unit is powered up. If the switch position changes while the unit is operating, all the LEDs flash but the product continues to work normally with the voltage selected on energisation prior to the change of position.
The LEDs return to their normal state if the switch is reset to its initial position defined before the last energisation.
Definition of asymmetry setting = Nominal voltage between phases (Un) x asymmetry rate (\%) displayed on front face.
The relay monitors its own supply voltage.
The relay controls:

- correct sequencing of the three phases
- failure of one of the three phases (U measured $<0.7 \times \mathrm{Un}$).
- asymmetry, adjustable from 5 to 15\% of Un.

In the event of a phase sequence or failure fault, the relay opens instantaneously.
In the event of an asymmetry fault, the relay opens at the end of the time delay set by the user.
When the unit is powered up with a measured fault, the relay stays open.
Asymmetry is defined as follows: (Vrms max. - Vrms min.) /Vrms mains.
Vrms mains corresponds to the voltage selected by the switch on the front face.

Operating principle

MWUA: Phase controller with voltage regeneration + Asymmetry + Under/Overvoltage Voltage selector switch:
Set the selector switch to the 3-phase network voltage Un.
The position of this selector switch is only taken into account when the unit is powered up. If the switch position changes while the unit is operating, all the LEDs flash but the product continues to work normally with the voltage selected on energisation prior to the change of position.
The LEDs return to their normal state if the switch is reset to its initial position defined before the last energisation.
The relay monitors its own supply voltage.
The relay controls:

- correct sequencing of the three phases
- failure of one of the three phases (U measured $<0.7 \times \mathrm{Un}$).
- asymmetry, adjustable from 5 to 15% of Un,
and the under and overvoltage drift adjustable from 2 to 20% of Un (-2 to -12\% across the $3 x$ $208 \mathrm{~V} \sim$ range, -2 to -17% across the $3 \times 220 \mathrm{~V} \sim$ range due to the minimum voltage 183 V $\sim ;+2$ to $+10 \%$ across the $3 \times 480 \mathrm{~V}$ range due to the maximum voltage $528 \mathrm{~V} \sim$).
In the event of a phase sequence or failure fault, the relay opens instantaneously.
In the event of an asymmetry or voltage fault, the relay opens at the end of the time delay set by the user.
When the unit is powered up with a measured fault, the relay stays open.
Asymmetry is defined as follows: (Vrms max. - Vrms min.) /Vrms mains.
Vrms mains corresponds to the voltage selected by the switch on the front face.

1) Overvoltage
(2) Hysteresis
(3) Undervoltage
(4) Phases L1, L2, L3
(5) Relay
(6) Delay on threshold crossing (Tt)

Dimensions (mm)

MWG - MWA - MWU - MWUA

Connections

MWG - MWA - MWU - MWUA

(1) 100 mA fast-blow fuse

Phase control

Multi-function phase control relay - 35 mm

\author{

- Control of 3-phase networks: phase sequence, phase failure, asymmetry, under and overvoltage with independent settings
 - Multi-function/Multi-voltage product
 - Controls its own supply voltage
 - True RMS measurement
 ■ LED status indication
}

General characteristics	
Timing	
Delay on threshold crossing	$0.1 \rightarrow 10 \mathrm{~s}(0,+10 \%)$
Repetition accuracy with constant parameters	$\pm 0.3 \%$
Reset time	1.5 s
Delay on pick-up	500 ms
Alarm on delay time max.	<200 ms
Output	
Type of output	1 double changeover relay
Type of contacts	No cadmium
Maximum breaking voltage	250 V ~
Max. breaking current	$5 \mathrm{~A} \sim$
Min. breaking current	$10 \mathrm{~mA} / 5 \mathrm{~V}=-$
Electrical life (number of operations)	1×10^{5}
Breaking capacity (resistive)	1250 VA ~
Maximum rate	360 operations/hour at full load
Operating categories acc. to IEC 60947-5-1	AC 12, AC 13, AC 14, AC 15, DC 12, DC 13, DC 14
Mechanical life (operations)	30×10^{6}
Insulation	
Nominal insulation voltage IEC 60664-1	400 V
Insulation coordination (IEC 60664-1/ 60255-5)	Overvoltage category III: degree of pollution 3
Rated impulse withstand voltage IEC 60664-1/60255-5	$4 \mathrm{KV}(1.2 / 50 \mu \mathrm{~s})$
Dielectric strength IEC 60664-1/60255-5	2 kV AC 50 Hz 1 min
Insulation resistance IEC 60664-1/ 60255-5	> $500 \mathrm{M} \Omega / 500 \mathrm{~V}$ -
General characteristics	
Display power supply	Green LED Extinguished in the event of phase failure
Display relay	Yellow LED Flashes during the threshold crossing delay
"Fault" indication	Yellow LED Lights up in the event of asymmetry Flashes in the event of under or overvoltage
Casing	35 mm
Mounting	On 35 mm symmetrical DIN rail, IEC/EN 60715
Mounting position	All positions
Material: enclosure plastic type VO to UL94 standard	Incandescent wire test according to IEC 60695-2-11 \& NF EN 60695-2-11
Protection (IEC 60529)	Terminal block: IP 20 Casing: IP 30
Weight	130 g
Connecting capacity IEC 60947-1	Rigid: $1 \times 4^{2}-2 \times 2.5^{2} \mathrm{~mm}^{2}$ 1×11 AWG - 2×14 AWG Flexible with ferrules: $1 \times 2.5^{2}-2 \times 1.5^{2} \mathrm{~mm}^{2}$ 1×14 AWG - 2×16 AWG
Max. tightening torques IEC 60947-1	$0.6 \rightarrow 1 \mathrm{Nm} / 5.3 \rightarrow 8.8$ Lbf.In
Operating temperature IEC 60068-2	$-20 \rightarrow+50^{\circ} \mathrm{C}$
Storage temperature IEC 60068-2	$-40 \rightarrow+70^{\circ} \mathrm{C}$
Humidity IEC 60068-2-30	$2 \times 24 \mathrm{hr}$ cycle 95\% RH max. without condensation $55^{\circ} \mathrm{C}$
Vibrations according to IEC/EN60068-2-6	$10 \rightarrow 150 \mathrm{~Hz}, \mathrm{~A}=0.035 \mathrm{~mm}$
Shocks IEC 60068-2-6	5 g
Standards	
Marking	CE (LVD) 73/23/EEC - EMC 89/336/EEC
Product standard	NF EN 60255-6 / IEC 60255-6 / UL 508 / CSA C22.2 N 14
Electromagnetic compatibility	Immunity EN 61000-6-2/IEC 61000-6-2 Emission EN 61000-6-4/EN 61000-6-3 IEC 61000-6-4/EC 61000-6-3 Emission EN 55022 class B
Certifications	UL, CSA, GL pending
Conformity with environmental directives	RoHS, WEEE
Comments	* 3-phase mains with earth

Phase control

Principles

Overview

The HWUA 3-phase network control relay monitors:

- The correct sequence of phases L1, L2, L3
- Total phase failure
- Undervoltage and overvoltage from 2 to 20% of Un
- Asymmetry rate from 5 to 15% of Un
- Faults are signalled via LEDs, distinguishing the origin of the fault.

If a fault persists for longer than the threshold crossing delay configured by the user, both output relays open and LED R is extinguished.

HWUA - Failure, phase sequence and asymmetry

(1) Phase L1
(2) Phase L2
(3) Phase L3
(4) Asymmetry threshold
(5) Hysteresis
(6) Relay
(7) Delay on threshold crossing (Tt)

HWUA - Under/Overvoltage
(1) Overvoltage
(2) Hysteresis
(3) Undervoltage
(4) Phases L1, L2, L3
(5) Relay
(6) Delay on threshold crossing (Tt)

Operating principle

HWUA: Phase + Asymmetry + Under/Overvoltage controller

Voltage selector switch:

Set the selector switch to the 3-phase network voltage Un.
The position of this selector switch is only taken into account when the unit is powered up. If the switch position changes while the unit is operating, all the LEDs flash but the product continues to work normally with the voltage selected on energisation prior to the change of position.
The LEDs return to their normal state if the switch is reset to its initial position defined before the last energisation.

The relay monitors its own supply voltage.

The relay controls:

- correct sequencing of the three phases,
- failure of one of the three phases (U measured $<0.7 \times \mathrm{Un}$),
- asymmetry, adjustable from 5 to 15\% of Un,
- undervoltage adjustable from -2 to -20% of Un, (-2 to -12\% for the 220 V range) and overvoltage adjustable from +2 to $+20 \%$ (+2 to $+10 \%$ over the $3 \times 480 \mathrm{~V}$ range due to the maximum voltage 528 V ~).
In the event of a phase sequence or failure fault, the relay opens instantaneously.
In the event of an asymmetry or voltage fault, the relay opens at the end of the time delay set by

Dimensions (mm)

HWUA

Connections

HWUA

(1) 100 mA fast-blow fuse

Phase control

3-phase voltage control relay - $17.5 \mathrm{~mm} / 35 \mathrm{~mm}$

- H3US and M3US relays control, on 3-phase networks: - overvoltage between phases,
- undervoltage between phases
- The H3USN relay controls, on 3-phase networks: - overvoltage between phases and neutral,
- undervoltage between phases and neutral,
- loss of neutral

■ Multi-voltage Products
\square Controls its own supply voltage
\square True RMS measurement

- LED status indication

H3USN

Part numbers			
	M3US	H3US	H3USN
Function	Under/overvoltage between phases	Under/overvoltage between phases	Over and undervoltage between phases and neutral / loss of neutral
Nominal voltage (V)	$3 \times 208 \rightarrow 3 \times 480 \mathrm{~V}$ ~	$3 \times 220 \rightarrow 3 \times 480 \mathrm{~V}$ ~	$3 \times 120 \rightarrow 3 \times 277 \mathrm{~V}$ ~
Output	1 single pole changeover relay	2 single changeover relays / one per threshold	2 single changeover relays / one per threshold
Part numbers	84873222	84873220	84873221

Product adaptations

[^1]| Accessories | Code |
| :--- | :--- |
| Description | 84800000 |
| Removable sealable cover for 17.5 mm casing | 84800001 |
| Removable sealable cover for 35 mm casing | |

General characteristics			
	M3US	H3US	H3USN
Supply			
Supply voltage Un	$3 \times 208 \rightarrow 3 \times 480 \mathrm{~V}$ ~ *	$3 \times 220 \rightarrow 3 \times 480 \mathrm{~V}$ ~ *	$3 \times 120 \rightarrow 3 \times 277 \mathrm{~V}$ ~ *
Voltage supply tolerance	-12\% / +10\%	-12\% / +10\%	-20\% / +20\%
Operating range	$183 \rightarrow 528 \mathrm{~V}$ ~	$194 \rightarrow 528$ V	$96 \rightarrow 332 \mathrm{~V}$ ~
Power consumption at Un	1.8 VA in \sim	2.9 VA in \sim	3.9 VA in \sim
Inputs and measuring cicuit			
Selection of phase-phase nominal voltage Un	$\begin{aligned} & 208-220-380-400-415- \\ & 440-480 \mathrm{~V} \sim \end{aligned}$	$\begin{aligned} & 220-380-400-415-440- \\ & 480 \mathrm{~V} \sim \end{aligned}$	-
Selection of phase-neutral voltage	-	-	120-127-220-230-240-260-277
Output			
Electrical life (number of operations)	1×10^{5}	1×10^{4}	1×10^{4}
General characteristics			
Casing	17.5 mm	35 mm	35 mm
Weight	80 g	130 g	130 g
Comments			
	* 3-phase mains with earth	* 3-phase mains with earth	* 3-phase mains with earth

	www.c-lynx.crouzet.com
General characteristics	
Supply	
~ supply voltage frequency	$50 / 60 \mathrm{~Hz} \pm 10 \%$
Galvanic isolation of power supply/measurement	No
Inputs and measuring cicuit	
Frequency of measured signal	$50 \rightarrow 60 \mathrm{~Hz} \pm 10 \%$
Max. measuring cycle time	$150 \mathrm{~ms} /$ True RMS measurement
Voltage threshold adjustment	■ Undervoltage -2 to -20\% of selected Un for M3US: (-2 to -12\% across the $3 \times 208 \mathrm{~V}$ range) (-2 to -17% across the $3 \times 220 \mathrm{~V}$ range) for H3US: (-2 to -12% across the $3 \times 220 \mathrm{~V}$ range) Overvoltage $2 \rightarrow 20 \%$ of selected Un For M3US and H3US: ($+2 \rightarrow+10 \%$ across the $3 \times 480 \vee \sim$ range)
Fixed hysteresis	2\% of Un (M3US, H3US)
Display precision	$\pm 3 \%$ of the displayed value
Repetition accuracy with constant parameters	$\pm 0.5 \%$
Measuring error with voltage drift	< 1% across the whole range
Measuring error with temperature drift	0.05\% / ${ }^{\circ} \mathrm{C}$
Timing	
Delay on threshold crossing	$0.3 \rightarrow 30 \mathrm{~s} \quad(0,+10 \%)$
Repetition accuracy with constant parameters	$\pm 3 \%$
Reset time	1500 ms
Delay on pick-up	500 ms
Alarm on delay time max.	200 ms
Output	
Type of contacts	No cadmium
Maximum breaking voltage	$250 \mathrm{~V} \sim$
Max. breaking current	$5 \mathrm{~A} \sim$
Min. breaking current	$10 \mathrm{~mA} / 5 \mathrm{~V}=-$
Breaking capacity (resistive)	1250 VA ~
Maximum rate	360 operations/hour at full load
Operating categories acc. to IEC 60947-5-1	AC 12, AC 13, AC 14, AC 15, DC 12, DC 13, DC 14
Mechanical life (operations)	30×10^{6}
Insulation	
Nominal insulation voltage IEC 60664-1	400 V
Insulation coordination (IEC 60664-1 / 60255-5)	Overvoltage category III: degree of pollution 3
Rated impulse withstand voltage IEC 60664-1/60255-5	$4 \mathrm{KV}(1.2 / 50 \mu \mathrm{~s})$
Dielectric strength IEC 60664-1/60255-5	2 kV AC 50 Hz 1 min
Insulation resistance IEC 60664-1 / 60255-5	> $500 \mathrm{M} \Omega / 500 \mathrm{~V}=-$
General characteristics	
Display power supply	Green LED
Display relay	Yellow LED (1 for M3US, 2 for H3US and H3USN)
Mounting	On 35 mm symmetrical DIN rail, IEC/EN 60715
Mounting position	All positions
Material: enclosure plastic type VO to UL94 standard	Incandescent wire test according to IEC 60695-2-11 \& NF EN 60695-2-11
Protection (IEC 60529)	$\begin{aligned} & \text { Terminal block: IP } 20 \\ & \text { Casing: IP30 } \end{aligned}$
Connecting capacity IEC 60947-1	Rigid: $1 \times 4^{2}-2 \times 2.5^{2} \mathrm{~mm}^{2}$ 1×11 AWG -2×14 AWG Flexible with ferrules: $1 \times 2.5^{2}-2 \times 1.5^{2} \mathrm{~mm}^{2}$ 1×14 AWG -2×16 AWG
Max. tightening torques IEC 60947-1	$0.6 \rightarrow 1 \mathrm{Nm} / 5.3 \rightarrow 8.8 \mathrm{Lbf} . \mathrm{Ft}$
Operating temperature IEC 60068-2	$-20 \rightarrow+50^{\circ} \mathrm{C}$
Storage temperature IEC 60068-2	$-40 \rightarrow+70^{\circ} \mathrm{C}$
Humidity IEC 60068-2-30	$2 \times 24 \mathrm{hr}$ cycle 95\% RH max. without condensation $55^{\circ} \mathrm{C}$
Vibrations according to IEC/EN60068-2-6	$10 \rightarrow 150 \mathrm{~Hz}, \mathrm{~A}=0.035 \mathrm{~mm}$
Shocks IEC 60068-2-6	5 g
Standards	
Marking	CE (LVD) 73/23/EEC - EMC 89/336/EEC
Product standard	NF EN 60255-6 / CEI 60255-6 / UL 508 / CSA C22.2 N 14
Electromagnetic compatibility	$\begin{aligned} & \text { Immunity EN 61000-6-2/IEC 61000-6-2 } \\ & \text { Emission EN 61000-6-4/EN 61000-6-3 } \\ & \text { IEC 61000-6-4/IEC 61000-6-3 } \\ & \text { Emission EN 55022 class B } \end{aligned}$
Certifications	UL, CSA, GL pending
Conformity with environmental directives	RoHS, WEEE

Phase control

Principles

Overview

3-phase voltage controllers which monitor:

- Undervoltage, adjustable from -20 to -2\% of Un
- Overvoltage, adjustable from 2 to 20% of Un
- Presence of the neutral (H3USN only)

Measurements are taken between Phases for the H3US - M3US and between Phases and Neutral for the H3USN
Faults are signalled via LEDs, distinguishing the origin of the fault (one LED for the upper threshold, one LED for the lower threshold).
Voltage selector switch: Set the selector switch to the 3-phase network voltage Un.
The position of this selector switch is only taken into account when the unit is powered up.
If the switch position changes while the unit is operating, all the LEDs flash but the product continues to work normally with the voltage selected on energisation prior to the change of position.
The LEDs return to their normal state if the switch is reset to its initial position defined before the last energisation.

M3US - Under/Overvoltage

(1) Overvoltage
(2) Hysteresis
(3) Undervoltage
(4) Phases L1, L2, L3
(5) Relay
(6) Over and undervoltage threshold delay

Operating principle

M3US

The relay monitors its own supply voltage. It controls:

- Undervoltage, adjustable from -20 to -2% of Un (-12 to -2% over the $3 \times 208 \mathrm{~V} \sim$ range and -
17% to -2% for the $3 \times 220 \vee \sim$ range due to the minimum voltage $183 \mathrm{~V} \sim$)
- Overvoltage, adjustable from $+2 \rightarrow+20 \% \quad(+2 \rightarrow+10 \%$ over the $3 \times 480 \vee \sim$ range due to the maximum voltage $528 \mathrm{~V} \sim$).
An adjustable time delay from 0.3 to 30 s can be used to disable the output relay during a transient fault.
In the event of a voltage fault, the relay opens at the end of the time delay set by the user. In the event of phase failure, the relay opens instantaneously, without waiting for the end of the time delay.
When the unit is powered up with a measured fault, the relay stays open.

H3US - H3USN - Under/Overvoltage

Operating principle

H3US

The relay monitors its own supply voltage.
It controls:

- Undervoltage, adjustable from - 2 to -20% of Un (-2 to -12% over the $3 \times 220 \mathrm{~V} \sim$ range due to the minimum voltage 194 V ~)
- Overvoltage, adjustable from +2 to $+20 \%$ (+2 to $+10 \%$ over the $3 \times 480 \mathrm{~V} \sim$ range due to the maximum voltage 528 V ~).
Each threshold has its own time delay with independent setting between 0.3 and 30 s .
In the event of a voltage fault, the corresponding relay (one undervoltage output/one overvoltage output) opens at the end of the time delay set by the user.
In the event of phase failure, both relays open instantaneously, without waiting for the end of the time delay. The two relay LEDs go out.

H3USN

The relay monitors its own supply voltage.
It controls:

- Presence of the neutral,
- Undervoltage, adjustable from -2 to -20\% of Un,
- Overvoltage, adjustable from +2 to $+20 \%$.

Each threshold has its own time delay with independent setting between 0.3 and 30 s .
In the event of a voltage fault, the corresponding relay (one undervoltage output/one overvoltage output) opens at the end of the time delay set by the user.
If neutral is lost, both relays open instantaneously and the corresponding LED is extinguished,
without waiting for the end of the time delay. The two relay LEDs are extinguished.

Dimensions (mm)

M3US

H3US - H3USN

Connections

M3US

(1) 100 mA fast-blow fuse or cut-out

H3US - H3USN

H3US

(1) 100 mA fast-blow fuse or cut-out

Voltage control

Voltage control relay - 17.5 mm

- Control relays monitoring their own power supply - MUS: Over/undervoltage control Selectable latching (memory) function
- MUSF: Over/undervoltage control

Adjustable time delays

- Control in $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ or =--
- True RMS measurement
- LED status indication

MUSF

Part numbers			
	MUS 12 --	MUS/MUSF $80 \sim$	MUS/MUSF $260 \sim$
Controlled ranges	$9 \rightarrow 15 \mathrm{~V}=-$	$20 \rightarrow 80 \mathrm{~V}$ ~	$65 \rightarrow 260$ V \sim
Functions			
Under/Overvoltage control	84872140	84872141	84872142
Under/Overvoltage control in window mode	-	84872151	84872152

Product adaptations

Accessories			
Description			Code
Removable sealable cover for 17.5 mm casing			84800000
General characteristics			
	MUS 12 =-	MUS/MUSF $80 \sim$	MUS/MUSF $260 \sim$
Supply			
Nominal voltage (V)	$12 \mathrm{~V}=-$	$24 \rightarrow 48 \mathrm{~V} \sim$	$110 \rightarrow 240 \mathrm{~V} \sim$
Power consumption at Un	1 W in $=-$	3.9 VA in $\sim 1.6 \mathrm{~W}$ in $=-$	3 VA in $\sim / 1 \mathrm{~W}$ in $=-$
Operating range	$7 \rightarrow 20 \mathrm{~V}=-$	$15 \rightarrow 100 \mathrm{~V} \sim$	$50 \rightarrow 270 \mathrm{~V} \sim$
Range of adjustment	$9 \rightarrow 15 \mathrm{~V}=-$	$20 \rightarrow 80 \vee \sim$	$65 \rightarrow 260 \mathrm{~V} \sim$
Inputs and measuring cicuit			
Hysteresis	$5 \rightarrow 20 \%$ of threshold	$5 \rightarrow 20 \%$ of threshold (MUS) 3% (fixed) of threshold (MUSF)	$5 \rightarrow 20 \%$ of threshold (MUS) 3% (fixed) of threshold (MUSF)
General characteristics			
Weight	75 g	80 g	80 g

General characteristics

MUS $12=/$ MUS/MUSF $80 \approx /$ MUS/MUSF $260 \approx$

Supply	
Polarity with DC voltage	\checkmark
~ supply voltage frequency	$50 / 60 \mathrm{~Hz} \pm 10 \%$
Galvanic isolation of power supply/measurement	No
Immunity from micro power cuts	10 ms
Inputs and measuring cicuit	
Max. measuring cycle time	$250 \mathrm{~ms} /$ True RMS measurement
Display precision	$\pm 10 \%$ of full scale
Repetition accuracy with constant parameters	$\pm 0.5 \%$
Measuring error with voltage drift	< 1% across the whole range
Measuring error with temperature drift	$\pm 0.05 \% /{ }^{\circ} \mathrm{C}$
Timing	
Delay on threshold crossing	$0.1 \rightarrow 10 \mathrm{sec}(0,+10 \%)$
Repetition accuracy with constant parameters	$\pm 0.5 \%$
Reset time	1.5 s
Delay on pick-up	500 ms en $\sim / 1 \mathrm{~s}$ in $=-$
Output	
Type of output	1 single pole changeover relay
Type of contacts	No cadmium
Maximum breaking voltage	$250 \mathrm{~V} \sim$
Max. breaking current	$5 \mathrm{~A} \sim$
Min. breaking current	$10 \mathrm{~mA} / 5 \mathrm{~V}=-$
Electrical life (number of operations)	1×10^{5}
Breaking capacity (resistive)	1250 VA ~
Maximum rate	360 operations/hour at full load
Operating categories acc. to IEC 60947-5-1	AC 12, AC 13, AC 14, AC 15, DC 12, DC 13, DC 14
Mechanical life (operations)	30×10^{6}
Insulation	
Nominal insulation voltage IEC 60664-1	250 V
Insulation coordination (IEC 60664-1 / 60255-5)	Overvoltage category III: degree of pollution 3
Rated impulse withstand voltage IEC 60664-1/60255-5	4 KV ($1.2 / 50 \mu \mathrm{~s}$)
Dielectric strength IEC 60664-1/60255-5	2 KV ~ 50 Hz 1 min
Insulation resistance IEC 60664-1 / 60255-5	> $500 \mathrm{M} \Omega / 500 \mathrm{~V}=-$
General characteristics	
Display power supply	Green LED
Display relay	Yellow LED
Casing	17.5 mm
Mounting	On 35 mm symmetrical DIN rail, IEC/EN 60715
Mounting position	All positions
Material: enclosure plastic type VO to UL94 standard	Incandescent wire test according to IEC 60695-2-11 \& NF EN 60695-2-11
Protection (IEC 60529)	Terminal block: IP 20 Casing: IP 30
Connecting capacity IEC 60947-1	Rigid: $1 \times 4^{2}-2 \times 2.5^{2} \mathrm{~mm}^{2}$ 1×11 AWG -2×14 AWG Flexible with ferrules: $1 \times 2.5^{2}-2 \times 1.5^{2} \mathrm{~mm}^{2}$ 1×14 AWG -2×16 AWG
Max. tightening torques IEC 60947-1	$0.6 \rightarrow 1 \mathrm{Nm} / 5.3 \rightarrow 8.8$ Lbf.In
Operating temperature IEC 60068-2	$-20 \rightarrow+50^{\circ} \mathrm{C}$
Storage temperature IEC 60068-2	$-40 \rightarrow 70^{\circ} \mathrm{C}$
Humidity IEC 60068-2-30	$2 \times 24 \mathrm{hr}$ cycle 95\% RH max. without condensation $55^{\circ} \mathrm{C}$
Vibrations according to IEC/EN60068-2-6	$10 \rightarrow 150 \mathrm{~Hz}, \mathrm{~A}=0.035 \mathrm{~mm}$
Shocks IEC 60068-2-6	5 g
Standards	
Marking	CE (LVD) 73/23/EEC - EMC 89/336/EEC
Product standard	NF EN 60255-6 / IEC 60255-6 / UL 508 / CSA C22.2 ${ }^{\circ} 14$
Electromagnetic compatibility	Immunity EN 61000-6-2/IEC 61000-6-2 Emission EN 61000-6-4/EN 61000-6-3 IEC 61000-6-4/IEC 61000-6-3 Emission EN 55022 class B
Certifications	UL, CSA, GL pending
Conformity with environmental directives	RoHS, WEEE

Principles

Overview

MUS and MUSF voltage control relays monitor single-phase DC network voltages.
These products monitor their own supply voltage.
MUS relays allow the user to choose between two operating modes:

- Under/overvoltage
- With or without fault latching

An adjustable time delay, on threshold crossing, provides immunity from transient phenomena, thus preventing spurious triggering of the output relay.

Operating principle

MUS - Under/Overvoltage controller
The operating mode is set by the user.
A switch is used to select under or overvoltage modes, with or without latching.
The switch position, and hence the operating mode, is read by the product on energisation.
If the switch is set to a non-conforming position, the product goes into fault mode, the output relay stays open, and the LEDs flash to signal the position error.
If the switch position changes while the unit is operating, all the LEDs flash but the product continues to work normally with the voltage selected on energisation prior to the change of position.
The LEDs return to their normal state if the switch is reset to its initial position defined before the last energisation.

MUS - Under/overvoltage - without latching

(1) Threshold
2) Hysteresis

3 Overvoltage function relay
4) Undervoltage function relay
(5) Controlled signal
(6) Delay on threshold crossing (Tt)

MUS - Under/overvoltage - with latching

(1) Threshold
(2) Hysteresis
(3) Overvoltage function relay
(4) Undervoltage function relay
(5) Controlled signal
(6) Delay on threshold crossing (Tt)

The under or overvoltage threshold value is set by a graduated potentiometer by reading the Un scale to be monitored directly
The hysteresis is set by a graduated potentiometer from 5 to 20% of the preset threshold. The hysteresis value cannot be higher than the extremes of the measurement range.
In overvoltage mode, if the controlled voltage exceeds the preset threshold for longer than the time set on the front face (0.1 to 10 s), the output relay opens and LED R is extinguished. During the time delay, this LED flashes.
Once the voltage falls below the threshold value minus the hysteresis, the relay closes instantaneously.
In undervoltage mode, if the controlled voltage falls below the preset threshold for longer than the time set on the front face (0.1 to 10 s), the output relay opens and LED R is extinguished. During the time delay, this LED flashes.
Once the voltage rises above the threshold value plus the hysteresis, the relay closes instantaneously.

If "with memory" mode has been selected, the relay opens and stays in this position when threshold crossing is detected. The power supply must be disconnected to reset the product.

Principles

MUSF - Under and overvoltage controller in

 window mode
(1) High threshold
(2) Low threshold
(3) Hysteresis
(4) Controlled signal
(5) Delay on threshold crossing (Tt)
(6) Relais

MUSF relays operate in window mode: they check that the controlled voltage stays between a minimum and maximum threshold.
The under and overvoltage threshold values are set by two graduated potentiometers by reading the Un scale to be monitored directly.
The hysteresis is fixed, value: 3% of the preset thresholds.
If the controlled voltage exceeds the preset upper threshold, or falls below the preset lower threshold for longer than the time set on the front face (0.1 to 10 s), the output relay opens and LED R is extinguished. During the time delay, this LED flashes.
Once the voltage returns to below the upper threshold value minus the hysteresis, or above the lower threshold value plus the hysteresis, the relay closes instantaneously.
When the unit is powered up with a measured fault, the relay stays open.

Dimensions (mm)

MUS - MUSF

Connections

MUS - MUSF

(1) 1 A fast-blow fuse or cut-out

Voltage control

Multi-function voltage control relay - 35 mm

\author{

- Control of AC and DC voltages
 - Automatic recognition of AC/DC
 - Measurement ranges from 0.2 V to 600 V
 - Choice between under and overvoltage
 - True RMS measurement
 - Selectable latching (memory) function
}

Part numbers

Functions
Measurement range
Nominal voltage (V)
Part numbers

HUL
Under/Overvoltage $0.2 \mathrm{~V} \rightarrow 60 \mathrm{~V}$ $24 \rightarrow 240 \mathrm{~V} \approx$ 84872120

HUH Under/Overvoltage $15 \mathrm{~V} \rightarrow 600 \mathrm{~V}$ $24 \rightarrow 240 \mathrm{~V}$ च 84872130

Product adaptations


```
\square Customisable colours and labels
\square Measuring ranges within the generic limits
- Fixed threshold in the generic measurement range
\square Fixed or adjustable time delay
\square Adjustable hysteresis
```

Accessories		
Description		Code
Removable sealable cover for 35 mm casing		84800001
General characteristics		
	HUL	HUH
Inputs and measuring cicuit		
Measurement range	$\begin{aligned} & 0.2 \mathrm{~V} \rightarrow 60 \mathrm{~V} \\ & \mathrm{E} 1-\mathrm{M}: 0.2 \rightarrow 2 \mathrm{~V} \\ & \mathrm{E} 2-\mathrm{M}: 1 \rightarrow 10 \mathrm{~V} \\ & \mathrm{E} 3-\mathrm{M}: 6 \rightarrow 60 \mathrm{~V} \end{aligned}$	$15 \mathrm{~V} \rightarrow 600 \mathrm{~V}$ E1 - M: $15 \rightarrow 150 \mathrm{~V}$ E2 - M: $30 \rightarrow 300 \mathrm{~V}$ E3 - M: $60 \rightarrow 600 \mathrm{~V}$
Input resistance	$\begin{aligned} & \text { E1 - M: } 6 \Omega \\ & \text { E2 - M: } 30 \Omega \\ & \text { E3-M: } 180 \Omega \end{aligned}$	$\begin{aligned} & \text { E1 - M: } 150 \Omega \\ & \text { E2 - M: } 300 \Omega \\ & \text { E3-M: } 600 \Omega \end{aligned}$
Permanent overload at $25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { E1-M: } 10 \mathrm{~V} \\ & \text { E2 - M: } 30 \mathrm{~V} \\ & \text { E3-M: } 150 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { E1 - M: } 250 \mathrm{~V} \\ & \text { E2 - M: } 500 \mathrm{~V} \\ & \text { E3 - M: } 700 \mathrm{~V} \end{aligned}$

General characteristics

HUL / HUH

Supply	
Supply voltage Un	$24 \mathrm{~V} \rightarrow 240 \mathrm{~V}$ ~
Voltage supply tolerance	-15\% / +10\%
Operating range	$20.4 \mathrm{~V} \rightarrow 264 \mathrm{~V}$ च
Polarity with DC voltage	No
~ supply voltage frequency	$50 / 60 \mathrm{~Hz} \pm 10 \%$
Galvanic isolation of power supply/measurement	\checkmark
Power consumption at Un	3.5 VA in AC/0.6 W in DC
Immunity from micro power cuts	10 ms
Inputs and measuring cicuit	
Frequency of measured signal	$0 \mathrm{~Hz}, 40 \rightarrow 70 \mathrm{~Hz}$
Max. measuring cycle time	$30 \mathrm{~ms} /$ True RMS measurement
Threshold adjustment	$10 \rightarrow 100 \%$ of the range
Adjustable hysteresis	$5 \rightarrow 50 \%$ of displayed threshold
Display precision	$\pm 10 \%$ of full scale
Repetition accuracy with constant parameters	$\pm 0.5 \%$
Measuring error with voltage drift	< 1% across the whole range
Measuring error with temperature drift	$\pm 0.05 \% /{ }^{\circ} \mathrm{C}$
Timing	
Delay on threshold crossing	$0.1 \rightarrow 3 \mathrm{~s}(0,+10 \%)$
Repetition accuracy with constant parameters	$\pm 2 \%$
Reset time	1500 ms
Delay on pick-up	< 600 ms
Output	
Type of output	1 double changeover relay
Type of contacts	No cadmium
Maximum breaking voltage	250 V / =--
Max. breaking current	$5 \mathrm{~A} \sim$
Min. breaking current	$10 \mathrm{~mA} / 5 \mathrm{~V}=-$
Electrical life (number of operations)	1×10^{5}
Breaking capacity (resistive)	1250 VA ~
Maximum rate	360 operations/hour at full load
Operating categories acc. to IEC 60947-5-1	AC12, AC13, AC14, AC15, DC12, DC13, DC14
Mechanical life (operations)	30×10^{6}
Insulation	
Nominal insulation voltage IEC 60664-1	250 V
Insulation coordination (IEC 60664-1 / 60255-5)	Overvoltage category III: degree of pollution 3
Rated impulse withstand voltage IEC 60664-1/60255-5	$4 \mathrm{KV}(1.2 / 50 \mu \mathrm{~s})$
Dielectric strength IEC 60664-1/60255-5	2 KV AC 50 Hz 1 min .
Insulation resistance IEC 60664-1 / 60255-5	$>500 \mathrm{M} \Omega / 500 \mathrm{~V}=-$
General characteristics	
Display power supply	Green LED
Display relay	Yellow LED
Casing	35 mm
Mounting	On 35 mm symmetrical DIN rail, IEC/EN 60715
Mounting position	All positions
Material: enclosure plastic type VO to UL94 standard	Incandescent wire test according to IEC 60695-2-11 \& NF EN 60695-2-11
Protection (IEC 60529)	$\begin{aligned} & \text { Terminal block: IP } 20 \\ & \text { Casing: IP } 30 \end{aligned}$
Weight	130 g
Connecting capacity IEC 60947-1	Rigid: $1 \times 4^{2}-2 \times 2.5^{2} \mathrm{~mm}^{2}$ 1×11 AWG -2×14 AWG Flexible with ferrules: $1 \times 2.5^{2}-2 \times 1.5^{2} \mathrm{~mm}^{2}$ 1×14 AWG -2×16 AWG
Max. tightening torques IEC 60947-1	$0.6 \rightarrow 1 \mathrm{Nm} / 5.3 \rightarrow 8.8$ Lbf. In
Operating temperature IEC 60068-2	$-20 \rightarrow+50^{\circ} \mathrm{C}$
Storage temperature IEC 60068-2	$-40 \rightarrow+70^{\circ} \mathrm{C}$
Humidity IEC 60068-2-30	$2 \times 24 \mathrm{hr}$ cycle 95\% RH max. without condensation $55^{\circ} \mathrm{C}$
Vibrations according to IEC/EN60068-2-6	$10 \rightarrow 150 \mathrm{~Hz}, \mathrm{~A}=0.035 \mathrm{~mm}$
Shocks IEC 60068-2-6	5 g
Standards	
Marking	CE (LVD) 73/23/EEC - EMC 89/336/EEC
Product standard	NF EN 60255-6 / IEC 60255-6 / UL 508 / CSA C22.2 ${ }^{\circ} 14$
Electromagnetic compatibility	$\begin{aligned} & \text { Immunity EN 61000-6-2/IEC 61000-6-2 } \\ & \text { Emission EN 61000-6-4/EN 61000-6-3 } \\ & \text { IEC 61000-6-4/IEC 61000-6-3 } \\ & \text { Emission EN 55022 class B } \end{aligned}$
Certifications	UL, CSA, GL pending
Conformity with environmental directives	RoHS, WEEE

Principles

HUL-HUH

Overview

HUL and HUH control relays are designed to control AC or DC voltages.
They automatically recognise the shape of the DC or AC signal (50 or 60 Hz).

General principle:

The operating mode is set by the user.
A switch is used to select under or overvoltage modes, with or without latching.
The switch position, and hence the operating mode, is read by the product on energisation.
If the switch is set to a non-conforming position, the product goes into fault mode, the output relay stays open, and the LEDs flash to signal the position error.
If the switch position changes while the unit is operating, all the LEDs flash but the product continues to work normally with the function selected on energisation prior to the change of position.
The LEDs return to their normal state if the switch is reset to its initial position defined before the last energisation.
The under or overvoltage threshold value is set by a graduated potentiometer as a percentage of the U scale to be monitored.
The hysteresis is set by a graduated potentiometer from 5 to 50% of the preset threshold. The hysteresis value cannot be higher than the extremes of the measurement range.

HUL-HUH - Under/overvoltage - without latching

(1) Threshold
(2) Hysteresis

3 Overvoltage function relay
(4) Undervoltage function relay
(5) Unit power-up
(6) Controlled voltage
(7) Delay on threshold crossing (Tt)

HUL-HUH - Under/overvoltage - with latching

(1) Threshold
(2) Hysteresis
(3) Overvoltage function relay
(4) Undervoltage function relay
(5) Unit power-up
(6) Controlled voltage
(7) Delay on threshold crossing (T)

If "with memory" mode has been selected, the relay opens and stays in this position when threshold crossing is detected.
The power supply must be disconnected to reset the product.
In overvoltage mode, if the controlled voltage exceeds the preset threshold for longer than the time set on the front face (0.1 to 3 s), the output relay opens and LED R is extinguished. During the time delay, this LED flashes.
Once the voltage falls below the threshold value minus the hysteresis, the relay closes instantaneously.

In undervoltage mode, if the controlled voltage falls below the preset threshold for longer than the time set on the front face (0.1 to 3 s), the output relay opens and LED R is extinguished. During the time delay, this LED flashes.
Once the voltage rises above the threshold value plus the hysteresis, the relay closes instantaneously.

Dimensions (mm)

HUL-HUH

Connections

HUL-HUH

(1) 1 A fast-blow fuse or cut-out

NB:
When controlling DC voltage from the same source supplying terminals A1 and A2, terminal M must be connected directly to the "minus" pole of this power supply.

Current control

Single function current control relay with current transformer - 17.5 mm

- Control of AC currents

- Built-in current transformer
- Measurement ranges from 2 A to 20 A
\square Choice of output relay action
- True RMS measurement

General characteristics	
Supply	
Supply voltage Un	$24 \mathrm{~V} \rightarrow 240 \mathrm{~V}$ こ
Voltage supply tolerance	-15\% / +10\%
Operating range	$20.4 \mathrm{~V} \rightarrow 264 \mathrm{~V} \sim$
Polarity with DC voltage	\checkmark
~ supply voltage frequency	$50 / 60 \mathrm{~Hz} \pm 10 \%$
Galvanic isolation of power supply/measurement	\checkmark
Power consumption at Un	3 VA in \sim et 1 W in $=-$
Immunity from micro power cuts	10 ms
Inputs and measuring cicuit	
Measurement range	$2 \rightarrow 20 \mathrm{~A}$
Permanent overload at $25^{\circ} \mathrm{C}$	100 A
Pulse overload <3s $\rightarrow 25^{\circ} \mathrm{C}$	300 A
Frequency of measured signal	$40 \rightarrow 70 \mathrm{~Hz}$ sinusoidal
Max. measuring cycle time	$30 \mathrm{~ms} /$ True RMS measurement
Threshold adjustment	$10 \rightarrow 100 \%$ of the range
Fixed hysteresis	15\% (fixed) of displayed threshold
Display precision	$\pm 10 \%$ of full scale
Repetition accuracy with constant parameters	$\pm 0.5 \%$
Measuring error with voltage drift	< 1\%
Measuring error with temperature drift	$\pm 0.05 \% /{ }^{\circ} \mathrm{C}$
Timing	
Response time	200 ms
Delay on pick-up	500 ms
Output	
Type of output	1 single pole changeover relay
Type of contacts	No cadmium
Maximum breaking voltage	250 V ~
Max. breaking current	$5 \mathrm{~A} \sim$
Min. breaking current	$10 \mathrm{~mA} / 5 \mathrm{~V}=-$
Electrical life (number of operations)	1×10^{5} manœuvres
Breaking capacity (resistive)	1250 VA ~
Maximum rate	360 operations/hour at full load
Operating categories acc. to IEC 60947-5-1	AC12, AC13, AC14, AC15, DC12, DC13, DC14
Mechanical life (operations)	30×10^{6} manœuvres
Insulation	
Nominal insulation voltage IEC 60664-1	400 V
Insulation coordination (IEC 60664-1 / 60255-5)	Overvoltage category III: degree of pollution 3
Rated impulse withstand voltage IEC 60664-1/60255-5	$4 \mathrm{KV}(1.2 / 50 \mu \mathrm{~s})$
Dielectric strength IEC 60664-1/60255-5	2 KV AC 50 Hz 1 min .
Insulation resistance IEC 60664-1/60255-5	$>500 \mathrm{M} \Omega$ @ $500 \mathrm{~V}=-$

General characteristics	
General characteristics	
Display power supply	Green LED
Display relay	Yellow LED
Casing	17.5 mm
Mounting	On 35 mm symmetrical DIN rail, IEC/EN 60715
Mounting position	All positions
Material: enclosure plastic type VO to UL94 standard	Incandescent wire test according to IEC 60695-2-11 \& NF EN 60695-2-11
Protection (IEC 60529)	Terminal block: IP20 Casing: IP30
Weight	110 g
Connecting capacity IEC 60947-1	Rigid: $1 \times 4^{2}-2 \times 2.5^{2} \mathrm{~mm}^{2}$ 1×11 AWG -2×14 AWG Flexible with ferrules: $1 \times 2.5^{2}-2 \times 1.5^{2} \mathrm{~mm}^{2}$ 1×14 AWG -2×16 AWG
Max. tightening torques IEC 60947-1	$0.6 \rightarrow 1 \mathrm{Nm} / 5.3 \rightarrow 8.8$ Lbf.In
Operating temperature IEC 60068-2	$-20 \rightarrow+50^{\circ} \mathrm{C}$
Storage temperature IEC 60068-2	$-40 \rightarrow+70^{\circ} \mathrm{C}$
Humidity IEC 60068-2-30	$2 \times 24 \mathrm{hr}$ cycle 95\% RH max. without condensation $55^{\circ} \mathrm{C}$
Vibrations according to IEC/EN60068-2-6	$10 \rightarrow 150 \mathrm{~Hz}, \mathrm{~A}=0.035 \mathrm{~mm}$
Shocks IEC 60068-2-6	5 g
Standards	
Marking	CE (LVD) 73/23/EEC - EMC 89/336/EEC
Product standard	NF EN 60255-6 / IEC 60255-6 / UL 508 / CSA C22.2 N 14
Electromagnetic compatibility	Immunity EN 61000-6-2/IEC 61000-6-2 Emission EN 61000-6-4/EN 61000-6-3 IEC 61000-6-4/IEC 61000-6-3 Emission EN 55022 class B
Certifications	UL, CSA, GL pending
Conformity with environmental directives	RoHS, WEEE

Principles

MIC

Overview

The MIC control relay is designed to control overcurrents (or undercurrents). It has a built-in current transformer.

MIC - Overcurrent

Operating principle

The MIC relay controls the overcurrent. The relay closes when the current exceeds the threshold displayed on the front face and opens when it falls below the threshold minus the hysteresis. When terminal Y1 is connected to A1 (+), the output is inverted. The relay opens when the current exceeds the threshold displayed on the front face and closes again when it falls back below the hysteresis (undercurrent).

Can be used for undercurrent control: ask your sales adviser.
(1) Threshold
(2) Hysteresis
3. Closing on threshold crossing mode (Y1 and A1 not connected)
(4) Opening on threshold crossing mode (Y1 and A1 connected)
(5) Unit power-up
(6) Current control

Dimensions (mm)

miC

Connections

 mic
(1) 100 mA fast-blow fuse or cut-out

Current control

Multi-function current control relay - 35 mm

- Automatic recognition of AC/DC
- Measurement ranges from 2 mA to 10 A
- Choice between over and undercurrent
- True RMS measurement
- Selectable latching (memory) function

Part numbers		
	HIL	HIH
Functions	Over or undercurrent	Over or undercurrent
Measurement range	$2 \mathrm{~mA} \rightarrow 500 \mathrm{~mA}$	$0.1 \mathrm{~A} \rightarrow 10 \mathrm{~A}$
Nominal voltage (V)	$24 \rightarrow 240 \mathrm{~V} \sim$	$24 \rightarrow 240 \mathrm{~V}$ च
Part numbers	84871120	84871130

Product adaptations

Customisable colours and labels
Measuring ranges within the generic limits
Fixed threshold in the generic measurement range
Fixed or adjustable time delay
Adjustable hysteresis

Accessories		
Description		Code
Removable sealable cover for 35 mm casing		84800001
General characteristics		
	HIL	HIH
Inputs and measuring cicuit		
Measurement range	$\begin{aligned} & 2 \rightarrow 500 \mathrm{~mA} \\ & \mathrm{E} 1-\mathrm{M}: 2 \rightarrow 20 \mathrm{~mA} \\ & \mathrm{E} 2-\mathrm{M}: 10 \rightarrow 100 \mathrm{~mA} \\ & \mathrm{E} 3-\mathrm{M}: 50 \rightarrow 500 \mathrm{~mA} \end{aligned}$	$0.1 \rightarrow 10 \mathrm{~A}$ $\mathrm{E} 1-\mathrm{M}: 0.1 \rightarrow 1 \mathrm{~A}$ E2 - M: $0.5 \rightarrow 5 \mathrm{~A}$ E3 - M: $1 \rightarrow 10 \mathrm{~A}$
Input resistance	$\begin{aligned} & \text { E1 - M: } 5 \Omega \\ & \text { E2 - M: } 1 \Omega \\ & \text { E3-M: } 0.2 \Omega \end{aligned}$	$\begin{aligned} & \text { E1 - M: } 0.1 \Omega \\ & \text { E2 - M: } 0.02 \Omega \\ & \text { E3 - M: } 0.01 \Omega \end{aligned}$
Permanent overload at $25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { E1-M: } 0.4 \mathrm{~A} \\ & \text { E2 - M: } 1 \text { A } \\ & \text { E3-M: } 2 \text { A } \end{aligned}$	$\begin{aligned} & \text { E1-M: } 2 \mathrm{~A} \\ & \text { E2 - M: } 11 \mathrm{~A} \\ & \text { E3-M: } 11 \mathrm{~A} \end{aligned}$
Pulse overload < 1 sec at $25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { E1-M: } 1 \mathrm{~A} \\ & \text { E2 - M: } 5 \mathrm{~A} \\ & \text { E3-M: } 8 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { E1 - M: } 17 \mathrm{~A} \\ & \text { E2 - M: } 20 \mathrm{~A} \\ & \text { E3 - M: } 50 \mathrm{~A} \end{aligned}$

Current control

Principles

HIL-HIH

Overview

HIL and HIH control relays are designed to control AC or DC currents.
They automatically recognise the shape of the DC or AC signal (50 or 60 Hz) and can control up to 10 A in DC. Above this level, a current transformer can be connected.

General principle:

The operating mode is set by the user.
A switch is used to select over or undercurrent modes, with or without latching.
The switch position, and hence the operating mode, is read by the product on energisation.
If the switch is set to a non-conforming position, the product goes into fault mode, the output relay stays open, and the LEDs flash to signal the position error.
If the switch position changes while the unit is operating, all the LEDs flash but the product continues to work normally with the function selected on energisation prior to the change of position.
The LEDs return to their normal state if the switch is reset to its initial position defined before the last energisation.
The over or undercurrent threshold value is set by a graduated potentiometer as a percentage of the I scale to be monitored.
The hysteresis is set by a graduated potentiometer from 5 to 50% of the preset threshold. The hysteresis value cannot be higher than the extremes of the measurement range.

An adjustable time delay from 1 to 20 s on energisation is used to prevent current peaks or troughs on starting.
HIL-HIH - Under/overcurrent - without latching

(1) Threshold
(2) Hysteresis
(3) Overcurrent function relay
4) Undercurrent function relay
(5) Unit power-up
(6) Controlled current
(7) Inhibit delay on starting (Ti)

8 Delay on upward threshold crossing (Tt)

HIL-HIH - Under/overcurrent - with latching

(1) Threshold
(2) Hysteresis

3 Overcurrent function relay
4) Undercurrent function relay
(5) Unit power-up
(6) Controlled current
(7) Inhibit delay on starting (Ti)

8 Delay on upward threshold crossing (Tt)

In overcurrent mode, if the controlled current exceeds the preset threshold for longer than the time set on the front face (0.1 to 3 s), the output relay opens and LED R is extinguished. During the time delay, this LED flashes.
Once the current falls below the threshold value minus the hysteresis, the relay closes instantaneously.

In undercurrent mode, if the controlled current falls below the preset threshold for longer than the time set on the front face (0.1 to 3 s), the output relay opens and LED R is extinguished. During the time delay, this LED flashes.
Once the current rises above the threshold value plus the hysteresis, the relay closes instantaneously.

[^2]
Dimensions (mm)

HIL-HIH

Connections

HIL-HIH

(1) 1 A fast-blow fuse or cut-out

NB:
When controlling DC current from the same source supplying terminals A1 and A2, terminal M must be connected directly to the "minus" pole of this power supply.

Frequency control

Frequency control relay - 35 mm

Controls frequency variations on 50 or 60 Hz AC networks
Controls its own supply voltage, connected between phase and neutral
\square Over and underfrequency with two independent relay outputs

- Selectable latching (memory) function
- LED status indication

Part numbers

Type	Function	Nominal voltage (V)	Code
HHZ	50 or 60 Hz over and underfrequency	$120 \rightarrow 277 \mathrm{~V} \sim$	84872501

Product adaptations

- Customisable colours and labels
- Fixed threshold in the generic measurement range
- Fixed or adjustable time delay

Adjustable fixed hysteresis

General characteristics

Supply	
Supply voltage Un	$120 \rightarrow 277$ V
Voltage supply tolerance	-15\% / +10\%
Operating range	$102 \rightarrow 308 \mathrm{~V}$ ~
~ supply voltage frequency	$50 / 60 \mathrm{~Hz} \pm 15 \%$
Galvanic isolation of power supply/measurement	No
Power consumption at Un	6 VA in \sim
Immunity from micro power cuts	10 ms
Inputs and measuring cicuit	
Measurement ranges	$40 \rightarrow 70 \mathrm{~Hz}$
Max. measuring cycle time	$200 \mathrm{~ms} /$ True RMS measurement
Adjustment of upper threshold	-2, +0, +2, +4, +6, +8, +10 Hz
Adjustment of lower threshold	+2, -0, -2, -4, -6, -8, -10 Hz
Fixed hysteresis	0.3 Hz
Display precision	$\pm 10 \%$ of full scale
Repetition accuracy with constant parameters	$\pm 0.5 \%$
Measuring error with voltage drift	$< \pm 1 \%$ across the whole range
Measuring error with temperature drift	$\pm 0.05 \% /{ }^{\circ} \mathrm{C}$
Timing	
Delay on threshold crossing	$0.1 \rightarrow 10 \mathrm{~s} \quad(0,+10 \%)$
Display precision	$\pm 10 \%$ of full scale
Repetition accuracy with constant parameters	$\pm 0.5 \%$
Reset time	2 s
Delay on pick-up	500 ms
Output	
Type of output	2 single pole changeover relay
Type of contacts	No cadmium
Maximum breaking voltage	$250 \mathrm{~V} \sim$
Max. breaking current	$5 \mathrm{~A} \sim$
Min. breaking current	$10 \mathrm{~mA} / 5 \mathrm{~V}=-\mathrm{c}$
Electrical life (number of operations)	1×10^{4}
Breaking capacity (resistive)	1250 VA ~
Maximum rate	360 operations/hour at full load
Operating categories acc. to IEC 60947-5-1	AC 12, AC 13, AC 14, AC 15, DC 12, DC 13, DC 14
Mechanical life (operations)	30×10^{6}
Insulation	
Nominal insulation voltage IEC 60664-1	400 V
Insulation coordination (IEC 60664-1 / 60255-5)	Overvoltage category III: degree of pollution 3
Rated impulse withstand voltage IEC 60664-1/60255-5	$4 \mathrm{KV}(1.2 / 50 \mu \mathrm{~s})$
Dielectric strength IEC 60664-1/60255-5	$2 \mathrm{KV} \sim 50 \mathrm{~Hz} 1 \mathrm{~min}$.
Insulation resistance IEC 60664-1/ 60255-5	$>500 \mathrm{M} \Omega / 500 \mathrm{~V}=-$
General characteristics	
Display power supply	Green LED
Display relay	$2 \times$ yellow LEDs - These LEDs flash during the threshold time delay
Casing	35 mm
Mounting	On 35 mm symmetrical DIN rail, IEC/EN 60715
Mounting position	All positions
Material: enclosure plastic type VO to UL94 standard	Incandescent wire test according to IEC 60695-2-11 \& NF EN 60695-2-11
Protection (IEC 60529)	Terminal block: IP20 Casing: IP30
Weight	100 g
Connecting capacity IEC 60947-1	Rigid: $1 \times 4^{2}-2 \times 2.5^{2} \mathrm{~mm}^{2}$ 1×11 AWG -2×14 AWG Flexible with ferrules: $1 \times 2.5^{2}-2 \times 1.5^{2} \mathrm{~mm}^{2}$ 1×14 AWG -2×16 AWG
Max. tightening torques IEC 60947-1	$0.6 \rightarrow 1 \mathrm{Nm} / 5.3 \rightarrow 8.8$ Lbf.In
Operating temperature IEC 60068-2	$-20 \rightarrow+50^{\circ} \mathrm{C}$
Storage temperature IEC 60068-2	$-40 \rightarrow+70^{\circ} \mathrm{C}$
Humidity IEC 60068-2-30	$2 \times 24 \mathrm{hr}$ cycle $95 \% \mathrm{RH}$ max. without condensation $55^{\circ} \mathrm{C}$
Vibrations according to IEC/EN60068-2-6	$10 \rightarrow 150 \mathrm{~Hz}, \mathrm{~A}=0.035 \mathrm{~mm}$
Shocks IEC 60068-2-6	5 g
Standards	
Marking	CE (LVD) 73/23/EEC - EMC 89/336/EEC
Product standard	NF EN 60255-6 / IEC 60255-6 / UL 508 / CSA C22.2 ${ }^{\circ} 14$
Electromagnetic compatibility	Immunity EN 61000-6-2/IEC 61000-6-2 Emission EN 61000-6-4/EN 61000-6-3 IEC 61000-6-4/IEC 61000-6-3 Emission EN 55022 class B
Certifications	UL, CSA, GL pending
Conformity with environmental directives	RoHS, WEEE

Frequency control

Principles

Overview

The HHZ control relay controls frequency variations on 50 or 60 Hz networks.
It can be used to monitor under and overfrequency, by setting two independent thresholds. It has two relay outputs: one per threshold.

Operating principle

HHZ - Over and underfrequency controller

Function selector switch:

Set the selector switch to the 50 or 60 Hz frequency of the network being monitored, select with or without memory mode. The switch position, and hence the operating mode, is read by the product on energisation.
If the switch is set to a non-conforming position on energisation, the product goes into fault mode, the output relay stays open and the LEDs flash to signal the position error.
If the switch position changes while the unit is operating, all the LEDs flash but the product continues to work normally with the function selected on energisation prior to the change of position.
The LEDs return to their normal state if the switch is reset to its initial position defined before the last energisation.
The relay monitors its own supply voltage.
The over and underfrequency threshold values are set using two potentiometers, graduated with the drift value of the frequency to be monitored.
A $\times 1 / \times 2$ switch can be used to double the control scale. The hysteresis is set at 0.3 Hz .
When the unit is powered up with a measured fault, the relay stays open.

HHZ - Under and overfrequency - without latching

(1) High threshold
(2) Low threshold
(3) Relay R1
(4) Relay R2
(5) Hysteresis
(6) Frequency
(7) Delay on upward threshold crossing (Tt)

HHZ - Under and overfrequency - with latching

(1) High threshold
(2) Low threshold
(3) Relay R2
(4) Relay R1
(5) Hysteresis
(6) Frequency
(7) Delay on upward threshold crossing (Tt)

If the frequency of the controlled voltage exceeds the preset overfrequency threshold for longer than the time set on the front face (0.1 to 10 s), the corresponding output relay opens and its LED is extinguished. During the time delay, this LED flashes.
Once the frequency falls below the value of the threshold minus the hysteresis, the relay closes instantly.
If the frequency of the controlled voltage falls below the underfrequency threshold for longer than the time set on the front face (0.1 to 10 s), the corresponding output relay opens and its LED is extinguished. During the time delay, this LED flashes.
Once the frequency rises above the threshold value plus the hysteresis, the relay closes instantly.

[^3]
Dimensions (mm)

HHZ

Connections

HHZ

(1) 1 A fast-blow fuse or cut-out

Level control

Level control relay - 17.5 mm

Level control by means of a discrete sensor

Part numbers

Type	Sensing	Nominal voltage (V)
MNS	By discrete sensor	$24 \rightarrow 240 \mathrm{~V} \bar{\sim}$

Product adaptations

Customisable colours and labels

Fixed time delay or adjustable range

General characteristics

General characteristics	
Display power supply	Green LED
Display relay	Yellow LED
Casing	17.5 mm
Mounting	On 35 mm symmetrical DIN rail, IEC/EN 60715
Mounting position	All positions
Material: enclosure plastic type VO to UL94 standard	Incandescent wire test according to IEC 60695-2-11 \& NF EN 60695-2-11
Protection (IEC 60529)	$\begin{aligned} & \text { Terminal block: IP } 20 \\ & \text { Casing: IP } 30 \end{aligned}$
Weight	80 g
Connecting capacity IEC 60947-1	Rigid: $1 \times 4^{2}-2 \times 2.5^{2} \mathrm{~mm}^{2}, 1 \times 11$ AWG -2×14 AWG Flexible with ferrules: $1 \times 2.5^{2}-2 \times 1.5^{2} \mathrm{~mm}^{2}, 1 \times 14$ AWG -2×16 AWG
Max. tightening torques IEC 60947-1	$0.6 \rightarrow 1 \mathrm{Nm} / 5.3 \rightarrow 8.8$ Lbf.In
Operating temperature IEC 60068-2	$-20 \rightarrow+50^{\circ} \mathrm{C}$
Storage temperature IEC 60068-2	$-40 \rightarrow+70^{\circ} \mathrm{C}$
Humidity IEC 60068-2-30	$2 \times 24 \mathrm{hr}$ cycle $95 \% \mathrm{RH}$ max. without condensation $55^{\circ} \mathrm{C}$
Vibrations according to IEC/EN60068-2-6	$10 \rightarrow 150 \mathrm{~Hz}, \mathrm{~A}=0.035 \mathrm{~mm}$
Shocks IEC 60068-2-6	5 g
Standards	
Marking	CE (LVD) 73/23/EEC - EMC 89/336/EEC
Product standard	NF EN 60255-6 / CEI 60255-6 / UL 508 / CSA C22.2 N 14
Electromagnetic compatibility	Immunity EN 61000-6-2/IEC 61000-6-2 Emission EN 61000-6-4/EN 61000-6-3 IEC 61000-6-4/IEC 61000-6-3 Emission EN 55022 class B
Certifications	UL, CSA, GL pending
Conformity with environmental directives	RoHS, WEEE

Principles

(1) Cycle start PB
(2) High threshold level
(3) Monitored level
(4) Ton time delay
(5) Toff time delay

Dimensions (mm)

MNS

Operating principle

MNS - Level controller using a discrete sensor

This product is designed to control a level by means of a discrete probe (float switch).
On power-up, the relay remains in the rest position. The level control function only begins after the pushbutton (PB) is pressed. This pushbutton is located on the front of the product, but can also be remotely located between Y1 and A1.
The output relay only closes if the float switch is open. If the level rises enough to make the float switch close, the relay will be deactivated after the time delay Toff.
When the level drops and the probe opens, the relay is re-energised after the time delay Ton.
The LEDs flash when the product is energised but the cycle has not started (PB has not yet been pressed).
The time delays Ton and Toff are set at between 0.1 and 10 sec by means of two potentiometers on the front face.

Level control

Level control relay - 35 mm

Part numbers

	HNM	HNE
Sensing	By resistive probes	By discrete sensors
Nominal voltage (V)	$24 \rightarrow 240 \mathrm{~V}$ こ	$24 \rightarrow 240 \mathrm{~V}$ こ
Part numbers	84870700	84870710

Product adaptations

[^4]| Accessories | | |
| :---: | :---: | :---: |
| Description | | Code |
| Removable sealable cover for 35 mm casing | | 84800001 |
| General characteristics | | |
| | HNM | HNE |
| Supply | | |
| Power consumption at Un | 5 VA in $\sim / 1.5 \mathrm{~W}$ in $=-$ | 5 VA in $\sim / 2.7 \mathrm{~W}$ in =-- |
| Immunity from micro power cuts (ms) | $\begin{aligned} & 90 \text { max. in } \sim \text { et } 100 \\ & \text { max. en }--- \end{aligned}$ | 50 |
| Output | | |
| Type of output | 1 double changeover relay | 1 single pole changeover relay |
| | | |
| Maximum reset time | 4 s | 1.7 s |
| Inputs and measuring cicuit | | |
| Measurement range | $250 \Omega \rightarrow 1 \mathrm{M} \Omega$ | - |
| Low sensitivity adjustment gamme LS | $250 \Omega \rightarrow 5 \mathrm{k} \Omega$ | - |
| Standard sensitivity adjustment gamme St | $5 \mathrm{k} \Omega \rightarrow 100 \mathrm{k} \Omega$ | - |
| High sensitivity adjustment gamme HS | $50 \mathrm{k} \Omega \rightarrow 1 \mathrm{M} \Omega$ | - |
| Adjustment of sensitivity | $5 \rightarrow 100 \%$ of the selected range | - |
| Display precision | $\pm 10 \%$ of full scale for LS and St ranges $-40 \% /+10 \%$ of full scale for HS range | $\pm 10 \%$ of full scale |
| Measuring error with temperature drift | $0.5 \% /{ }^{\circ} \mathrm{C}$ in standard sensitivity | $0.5 \% /{ }^{\circ} \mathrm{C}$ in standard sensitivity |
| Measuring error with voltage drift | 0\%/V across the whole range | 0\%/V across the whole range |
| Max. voltage at probe terminals | $5 \mathrm{~V} / 500 \mathrm{~Hz} \pm 10 \%$ | 12 V |
| Max. current via probes | $<1 \mathrm{~mA}$ | 40 mA |
| Max. length of probe cables | 100 m | - |
| Max. capacity of probe cable (nF) | 1 nF for HS range 2.2 nF for St range 4.7 nF for LS range | |
| Input circuit 3-wire sensors | No | \checkmark |
| General characteristics | | |
| Weight | 115 g | 110 g |

General characteristics

HNM / HNE

Supply	
Supply voltage Un	$24 \mathrm{~V} \rightarrow 240 \mathrm{~V}$ ~
Voltage supply tolerance	-15\% / +10\%
Operating range	$20.4 \rightarrow 264 \mathrm{~V}$ च
Polarity with DC voltage	No
~ supply voltage frequency	$50 / 60 \mathrm{~Hz} \pm 10 \%$
Galvanic isolation of power supply/measurement	\checkmark
Timing	
Delay on threshold crossing	$0.1 \rightarrow 5 \mathrm{~s}(0,+10 \%)$
Repetition accuracy with constant parameters	$\pm 2 \%$
Delay on pick-up	600 ms
Output	
Type of contacts	No cadmium
Maximum breaking voltage	250 V ~
Max. breaking current	$5 \mathrm{~A} \sim$
Min. breaking current	$10 \mathrm{~mA} / 5 \mathrm{~V}=-$
Electrical life (number of operations)	1×10^{5}
Breaking capacity (resistive)	1250 VA ~
Maximum rate	360 operations/hour at full load
Operating categories acc. to IEC 60947-5-1	AC12, AC 13, AC 14, AC 15, DC 12, DC 13
Mechanical life (operations)	30×10^{6}
Insulation	
Nominal insulation voltage IEC 60664-1	250 V
Insulation coordination (IEC 60664-1 / 60255-5)	Overvoltage category III: degree of pollution 3
Rated impulse withstand voltage IEC 60664-1/60255-5	4 KV (1.2 / $50 \mu \mathrm{~s}$)
Dielectric strength IEC 60664-1/60255-5	2 KV AC 50 Hz 1 min .
Insulation resistance IEC 60664-1 / 60255-5	$>500 \mathrm{M} \Omega / 500 \mathrm{~V}=-$
General characteristics	
Display power supply	Green LED
Display relay	Yellow LED
Delay	Yellow LED
Casing	35 mm
Mounting	On 35 mm symmetrical DIN rail, IEC/EN 60715
Mounting position	All positions
Material: enclosure plastic type VO to UL94 standard	Incandescent wire test according to IEC 60695-2-11 \& NF EN 60695-2-11
Protection (IEC 60529)	Terminal block: IP20 Casing: IP30
Connecting capacity IEC 60947-1	Rigid: $1 \times 4^{2}-2 \times 2.5^{2} \mathrm{~mm}^{2}$ 1×11 AWG -2×14 AWG Flexible with ferrules: $1 \times 2.5^{2}-2 \times 1.5^{2} \mathrm{~mm}^{2}$ 1×14 AWG -2×16 AWG
Max. tightening torques IEC 60947-1	$0.6 \rightarrow 1 \mathrm{Nm} / 5.3 \rightarrow 8.8$ Lbf.In
Operating temperature IEC 60068-2	$-20 \rightarrow+50^{\circ} \mathrm{C}$
Storage temperature IEC 60068-2	$-40 \rightarrow+70^{\circ} \mathrm{C}$
Humidity IEC 60068-2-30	$2 \times 24 \mathrm{hr}$ cycle 95\% RH max. without condensation $55^{\circ} \mathrm{C}$
Vibrations according to IEC/EN60068-2-6	$10 \rightarrow 150 \mathrm{~Hz}, \mathrm{~A}=0.035 \mathrm{~mm}$
Shocks IEC 60068-2-6	5 g
Standards	
Marking	CE (LVD) 73/23/EEC - EMC 89/336/EEC
Product standard	NF EN 60255-6 / IEC 60255-6 / UL 508 / CSA C22.2 N 14
Electromagnetic compatibility	Immunity EN 61000-6-2/IEC 61000-6-2 Emission EN 61000-6-4 2002/EN 61000-6-3 IEC 61000-6-4/IEC 61000-6-3 Emission EN 55022 class A
Certifications	UL, CSA, GL pending
Conformity with environmental directives	RoHS, WEEE

Level control

Principles

HNM-HNE

Overview
HNM and HNE control relays are designed to monitor the levels of:

- Conductive liquid (HNM)
- Any other product (HNE)

The HNM relay takes its measurements by means of resistive probes.
The HNE relay takes its measurements by means of discrete sensors.
Both these products actuate their output relay during emptying or filling of a tank.

General principle:

HNM relays control levels of conductive liquids. The principle is based on measuring the apparent resistance of the liquid between two submerged probes. When this value is below the preset threshold displayed on the front face of the unit, the relay changes state. To avoid electrolytic phenomena, an AC current runs across the probes. A rotary switch on the front face can be used to select the desired function and sensitivity range.

HNE relays control levels of products which may or may not be conductive. High and low-level data is produced by 3-wire output discrete sensors.
A green LED indicates the presence of the supply voltage.
A yellow LED indicates the status of the output relay.
A yellow LED flashes during the time delay.

Parameter setting:

A rotary switch on the front face can be used to select the sensitivity range, and the emptying or filling function.
A second switch can be used to select the number of levels (1 or 2), as well as the type of time delay in the case of 1-level mode.
The configuration of these switches is taken into account on energisation.
If the switch is set to a non-conforming position on energisation, the product goes into fault mode, the output relay stays open and the LEDs flash to signal he position error.
If the switch position changes while the unit is operating, all the LEDs flash but the product continues to work normally with the function selected on energisation prior to the change of position.
The LEDs return to their normal state if the switch is reset to its initial position defined before the last energisation.

HNM-HNE - Emptying/filling function - two levels

(1) Maximum level
(2) Minimum level
(3) Output relay R filling function "Up"

4 Output relay R emptying function "Down"

HNM-HNE - One-level filling function/on-delay

(1) Min. probe level
(2) R output relay

HNM-HNE - One-level filling function/off-delay

(1) Min. probe level sonde Min
(2) R output relay

Control of two levels, emptying function

(Level: 2, LS emptying function (Low sensitivity: 250Ω to $5 \mathrm{k} \Omega$), St emptying (Standard sensitivity: $5 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$), HS emptying (High sensitivity: $50 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$).
As long as the liquid level has not reached the probe maximum, the output relay stays open. Once the max. level is reached, the contact closes, thus allowing the tank to empty (valve opens, pump starts, etc). When the level drops below the min. level, the contact opens to interrupt the emptying process.
NB: In two-level control mode the time delay for preventing wave effect is not active.

Control of two levels, filling function

(Level: 2, LS filling function (Low sensitivity: 250Ω to $5 \mathrm{k} \Omega$), St filling (Standard sensitivity: $5 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$), HS filling (High sensitivity: $50 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$).
As long as the liquid level has not reached the probe maximum, the output relay stays closed Once the max. level is reached, the contact opens and pumping stops. When the level drops below the min. level, the contact closes again and pumping restarts so as to make the liquid level rise again.
NB: In two-level control mode the time delay for preventing wave effect is not active.

One-level control (min. probe), filling function, on-delay
(Level: 1 - on-delay, LS filling function (Low sensitivity: 250Ω to $5 \mathrm{k} \Omega$), St filling (Standard sensitivity: $5 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$), HS filling (High sensitivity: $50 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$).

When the liquid level drops below the probe for a duration longer than the value of time delay Tt set on the front face, the relay closes and stays closed until the liquid level reaches the probe again.
f the liquid level rises back above the level set before the end of the time delay, the relay does not close.

One-level control (min. probe), filling function, off-delay
(Level: 1 - off-delay, LS filling function (Low sensitivity: 250Ω to $5 \mathrm{k} \Omega$) or St filling (Standard sensitivity: $5 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$) or HS filling (High sensitivity: $50 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$).
When the liquid level drops below the probe for a duration longer than the value of time delay Tt set on the front face, the relay closes instantly and stays closed until the liquid level reaches the probe again and stays above it for a duration longer than time delay Tt set on the front face. If the liquid level drops back below the level set before the end of the time delay, the relay stays closed.

Principles

HNM-HNE - One-level emptying function/on-delay

(1) Min. probe level
(2) R output relay

HNM-HNE - One-level emptying function/off-delay

(1) Min. probe level
(2) R output relay

One-level control (min. probe), emptying function, on-delay

(Level: 1 - on-delay, LS emptying function (Low sensitivity: 250Ω to $5 \mathrm{~kW} \Omega$), St emptying (Standard sensitivity: $5 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$), HS emptying (High sensitivity: $50 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$).

When the liquid level rises above the probe for a duration longer than the value of time delay Tt set on the front face, the relay closes and stays closed until the liquid level drops back below the probe.
If the liquid level drops back below the level set before the end of the time delay, the relay does not close.

Dimensions (mm)

HNM-HNE

Connections

HNM

(1) 1 A fast-blow fuse or cut-out
(2) Common

NB:
Probe cable: screened cable recommended, screening and "common" connected to earth.
The probe cable does not have to be screened, but it is inadvisable to mount it close to the power cables.
For mono level, use the "com" and "min." electrodes.

HNE

(1) 1 A fast-blow fuse or cut-out

NB:
Probe cable: screened cable recommended, screening and "common" connected to earth.
The probe cable does not have to be screened, but it is inadvisable to mount it close to the power cables.
For mono level, use the "com" and "min." electrodes.

Level control

Electrode and probe holders

Level control accessories

electrode holder

Single probe electrode holder

Part numbers

Type	Accessories	Operating temperature (${ }^{\circ} \mathrm{C}$)	Pressure	Code
S8	Light and compact 3-probe electrode holder (stainless steel) Electrode holder and 1000 mm probe Especially recommended for drinks dispensers and for applications where space is limited	80	$2 \mathrm{~kg} / \mathrm{cm}^{2}$	79696044
S3	Electrode holder with a single probe supplied in a standard length of 1000 mm . (304 stainless steel) Mounting with external $3 / 8^{\prime \prime}$ BSP thread and hexagonal head. Use 24 mm . spanner for hexagon. Suitable for use on boilers, autoclaves	≤ 200	Max.: $25 \mathrm{Kg} / \mathrm{cm}^{2}$	79696014
S7	Protected electrode for mounting by suspension. Protective shell: PUC (S7) Electrode: stainless steel Length of cable as requested (ref. C1) : 79696001			79696043
S5	Suitable for high pressures and high temperatures. Metal parts of stainless steel, isolated by ceramic. $3 / 8^{\prime \prime}$ BSP mounting thread.	≤ 350	Max.: $15 \mathrm{Kg} / \mathrm{cm}^{2}$	79696006

Dimensions (mm)

79696014 - S3

Electrode holder with a single probe supplied
in a standard length of 1000mm. (304 stainless steel).

Mounting with external 3/8" BSP thread and hexagonal head.
Use 24 mm . spanner for hexagon. Suitable for use on boilers,
autoclaves and under high temperature conditions up to $200^{\circ} \mathrm{C}$ and high pressure conditions up to $25 \mathrm{~kg} / \mathrm{cm}^{2}$

79696 043-S7

Protected electrode for mounting by suspension
Protective shell: PUC (S7)
Electrode: stainless steel.
Length of cable as requested (C1) : 79696001

S5

1) 9.5 Across flats
2. $1 / 4$ width

3 $5 / 32$ width
(4) $3 / 8$ tapered NPT

Suitable for high pressures and high temperatures. For use up to $350^{\circ} \mathrm{C}$ and $15 \mathrm{~kg} / \mathrm{cm}^{2}$
Metal parts of stainless steel, isolated by ceramic
3/8" BSP mounting thread.

Dimensions (mm)

79696044 - S8

Light and compact 3-probe electrode holder (stainless steel).
Electrode holder and 1000 mm probe.
Especially recommended for drinks dispensers
and for applications where space
is limited.
Operating temperature: $80^{\circ} \mathrm{C}$
Max. pressure: $2 \mathrm{~kg} / \mathrm{cm}^{2}$

Speed control

Speed control relay - 35 mm

\square Control of overspeed, underspeed, operating rate, stopping
■ Measurement via discrete sensors - 3-wire PNP or NPN, Namur, voltage $0-30 \mathrm{~V}$ or volt-free contact type

- Works with either NO or NC sensors
- Time between pulses adjustable from 0.05 s to 10 min
- Power-on inhibit time, adjustable from 0.6 to 60 s
- Inhibit time can be managed via an external contact

HSV

Part numbers

Type	Nominal voltage (V)		Code
HSV	$24 \rightarrow 240 \mathrm{~V}$ च		84874320
Product adaptations			
CuŞ		Customisable colours and labels Possible to delete settings Fixed threshold in the generic measurement range Fixed or adjustable time delay	

Accessories
Description
Removable sealable cover for 35 mm casing

General characteristics

Supply	
Supply voltage Un	$24 \mathrm{~V} \rightarrow 240 \mathrm{~V}$ ~
Voltage supply tolerance	-15\% / +10\%
Operating range	$20.4 \mathrm{~V} \rightarrow 264 \mathrm{~V} \bar{\sim}$
Polarity with DC voltage	No
~ supply voltage frequency	$50 / 60 \mathrm{~Hz} \pm 10 \%$
Galvanic isolation of power supply/measurement	Yes
Power consumption at Un	5 VA in $\sim / 3 \mathrm{~W}$ in $=-$
Immunity from micro power cuts	50 ms
Inputs and measuring cicuit	
Input circuit 3-wire sensors	PNP or NPN, 12V, 50 mA max.
Input circuit NAMUR sensor	$12 \mathrm{~V} / 1.5 \mathrm{~K} \Omega$ *
Input circuit Contact	$12 \mathrm{~V} / 9.5 \mathrm{~K} \Omega$
Input circuit Voltage input	0 V min. $/ 30 \mathrm{~V}$ max. $/ 9.5 \mathrm{~K} \Omega$ High state 4.5 V min. Low state 1 V max.
Minimum pulse time	5 ms in high and low state
Frequency of measured signal	1.5 m Hz minimum, 22 Hz maximum
Measurement ranges	$0.5 \mathrm{~s}-1 \mathrm{~s}-5 \mathrm{~s}-10 \mathrm{~s}-1 \mathrm{mn}-5 \mathrm{mn}-10 \mathrm{mn}$
Threshold adjustment	$10 \rightarrow 100 \%$ of the range
Fixed hysteresis	5\% of displayed threshold
Display precision	$\pm 10 \%$ of full scale
Repetition accuracy with constant parameters	$\pm 0.5 \%$
Measuring error with voltage drift	< 1% across the whole range
Measuring error with temperature drift	$\pm 0.1 \% /{ }^{\circ} \mathrm{C}$ max.
Timing	
Maximum threshold crossing response time	15 ms
Reset time S2	50 ms minimum (in memory mode)
Reset time	In memory mode (power break) : 1500 ms minimum
Inhibit time delay	On energisation: $0.6 \rightarrow 60 \mathrm{~s}(0,+10 \%$ of full scale)
Repetition accuracy with constant parameters	$\pm 0.5 \%$
Delay on pick-up	50 ms
Display precision	$\pm 10 \%$ of full scale

General characteristics

Output	
Type of output	1 single pole changeover relay
Type of contacts	No cadmium
Maximum breaking voltage	250 V $\sim /=$
Max. breaking current	$5 \mathrm{~A} \sim$
Min. breaking current	$10 \mathrm{~mA} / 5 \mathrm{~V}=-$
Electrical life (number of operations)	1×10^{5}
Breaking capacity (resistive)	1250 VA ~
Maximum rate	360 operations/hour at full load
Operating categories acc. to IEC 60947-5-1	AC 12, AC 13, AC 14, AC 15, DC 12, DC 13, DC 14
Mechanical life (operations)	30×10^{6}
Insulation	
Nominal insulation voltage IEC 60664-1	250 V
Insulation coordination (IEC 60664-1 / 60255-5)	Overvoltage category III: degree of pollution 3
Rated impulse withstand voltage IEC 60664-1/60255-5	4 KV ($1.2 / 50 \mu \mathrm{~s}$)
Dielectric strength IEC 60664-1/60255-5	2 kV AC 50 Hz 1 min
Insulation resistance IEC 60664-1 / 60255-5	> $500 \mathrm{M} \Omega / 500 \mathrm{~V}=-$
General characteristics	
Display power supply	Green LED
Display relay	Yellow LED
Inhibit display	Yellow LED
Casing	35 mm
Mounting	On 35 mm symmetrical DIN rail, IEC/EN 60715
Mounting position	All positions
Material: enclosure plastic type VO to UL94 standard	Incandescent wire test according to IEC 60695-2-11 \& NF EN 60695-2-11
Protection (IEC 60529)	Terminal block: IP20 Casing: IP30
Weight	120 g
Connecting capacity IEC 60947-1	$\begin{aligned} & \text { Rigid: } 1 \times 4^{2}-2 \times 2.5^{2} \mathrm{~mm}^{2} \\ & 1 \times 11 \mathrm{AWG}-2 \times 14 \mathrm{AWG} \\ & \text { Flexible with ferrules: } 1 \times 2.5^{2}-2 \times 1.5^{2} \mathrm{~mm}^{2} \\ & 1 \times 14 \mathrm{AWG}-2 \times 16 \mathrm{AWG} \end{aligned}$
Max. tightening torques IEC 60947-1	$0.6 \rightarrow 1 \mathrm{Nm} / 5.3 \rightarrow 8.8$ Lbf.In
Operating temperature IEC 60068-2	$-20 \rightarrow+50^{\circ} \mathrm{C}$
Storage temperature IEC 60068-2	$-40 \rightarrow+70^{\circ} \mathrm{C}$
Humidity IEC 60068-2-30	$2 \times 24 \mathrm{hr}$ cycle 95\% RH max. without condensation $55^{\circ} \mathrm{C}$
Vibrations according to IEC/EN60068-2-6	$10 \rightarrow 150 \mathrm{~Hz}, \mathrm{~A}=0.035 \mathrm{~mm}$
Shocks IEC 60068-2-6	5 g
Standards	
Marking	CE (LVD) 73/23/EEC - EMC 89/336/EEC
Product standard	NF EN 60255-6 / IEC 60255-6 / UL 508 / CSA C22.2 N 14
Electromagnetic compatibility	Immunity EN 61000-6-2/IEC 61000-6-2 Emission EN 61000-6-4/EN 61000-6-3 IEC 61000-6-4/IEC 61000-6-3 Emission EN 55022 class B
Certifications	UL, CSA, GL pending
Conformity with environmental directives	RoHS, WEEE
Comments	
The IEC 60947-5-6/1999-12 NAMUR standard does not control amplifier), but it defines the test conditions for which operating zones are specified. The great majority of NAM the nominal switching distance to be maintained.	voltage (open circuit voltage) or the load resistance (source resistance of the oltage/current characteristics with high and low impedance, the normal supply voltage. Matching the load resistance to the operating voltage allows

Speed control

Principles

HSV

Overview

The HSV relay controls the speed (or, more strictly speaking, the operating rate, or frequency) of a process (moving walkway, conveyor, etc.) using discrete sensors:

- 3-wire PNP or NPN output proximity sensor
- voltage input 0-30 V
- NAMUR proximity sensor
- volt-free contact

It can be used to monitor under OR overspeed

Operating principle

Measurement

The monitored process cycle is the succession of pulses characterised by a signal with two states: high and low. The speed measurement is obtained by measuring the duration of this signal, from the first detected change of state (either a rising or falling edge).
Digital signal processing avoids the problem of disparity of signals.
From energisation, or after the appearance (or reappearance) of the sensor signal, detection (characterisation) of the signal requires processing of one or more periods (two maximum).
During this time, control is inoperative.

Operating mode

Using the selector switch, select one of four modes:

- Underspeed without latching
- Underspeed with latching
- Overspeed without latching
- Overspeed with latching

If, on energisation, the switch is placed in one of the three intermediate positions (between "underspeed with latching" and "overspeed with latching"), the relay stays in the rest state ("alarm") and the error is signalled by all three LEDs flashing simultaneously
The mode selector switch position is taken into account on energisation.
Modifications made during operation will have no effect: the active configuration may therefore be different from that indicated by the switch, the relay operates normally but the change in configuration is signalled by all three LEDs flashing simultaneously.

Latching

In "memory" mode, when a fault has been recorded, the HSV relay latches in the rest position ("alarm" operational state). Once the speed is correct again, the relay can be unlatched (reset) by closing contact S 2 (for 50 ms minimum).
lrespective of the speed of the controlled process, when S2 is closed the HSV relay is inhibited, the output is at the operating point ("normal" operational state) ; if the speed is still not correct when contact S 2 is reopened, the relay latches again in the rest position ("alarm" operational state).
The HSV can also be reset, by switching off and on again several times in succession (the power break must last at least 1500 ms).
If the process speed is incorrect, this method is limited by the same restriction as resetting using S2.

HSV - Control of underspeed without latching

(1) Voltage (S1)
(2) Threshold
(3) Inhibit LED
(4) Relay

5 Inhibit delay on starting (Ti)
(6) 1500 ms min.
(7) Speed

After the end of the inhibit delay on starting, "Ti", as soon as the measured speed drops below the threshold value, the output relay changes state, from operating point to rest position ("alarm" operational state, 11-14 open and 11-12 closed).
It returns to the initial state when the speed rises above the threshold plus the hysteresis (fixed at 5% of the displayed threshold).
After the power supply returns, following a break that has lasted at least 1500 ms , the relay is in the ("normal") operating state during the time delay and stays there until the speed is above the threshold.

Principles

HSV - Control of underspeed with latching

(1) Voltage (S1)
(2) Contact S2
(3) Threshold
(4) Inhibit LED
(5) Relay
(6) Inhibit delay on starting (Ti)
(7) 50 ms min .
(8) 1500 ms min .
(9) Speed

HSV - Underspeed with inhibition by S2


```
(1) Voltage (S1)
(2) Contact S2
(3) Threshold
(4) Inhibit LED
(5) Relay
(6) Inhibit delay on starting (Ti)
(7) Speed
```

HSV - Control of overspeed without latching

(1) Voltage (S1)
(2) Threshold
(3) Inhibit LED
(4) Relay
(5) Inhibit delay on starting (Ti)
(6) 1500 ms min .
(7) Speed

When the HSV has been configured in "memory" mode, if underspeed is detected, the output relay stays in the rest state ("alarm") irrespective of any subsequent change in the speed of the process.
It will not be able to revert to ("normal") operating state until contact S 2 closes (50 ms minimum). If, when S2 reopens, the speed is inadequate, the relay reverts to the rest latched state ("alarm"). The HSV can also be reset by a power break (1500 ms minimum) ; the relay then returns to the ("normal") operating state for at least the duration of the time delay, irrespective of the speed of the process.

On energisation, to allow the controlled process to reach its nominal operating speed, the HSV relay is inhibited for a period that is adjustable from 0.6 to 60 seconds.
This time delay can be modified during inhibition to be shorter or longer.
The HSV relay can also be inhibited by the closing of contact S2: on starting, for example, if the process acceleration time is more than 60 s , or at any time during operation.
Irrespective of the origin (delay on starting or S2 closing), inhibition maintains the output relay in the"closed' position" ("normal" operational state, contacts 11-14 closed and 11-12 open) and is signalled by the Inhibit LED lighting up.
If, after removal of the inhibition (end of delay on starting or opening of contact S2), the signal detection phase has not ended, the relay drops out after the expected time between two pulses (measured from the end of inhibition).
Inhibition must last for as long as required for the product to detect at least 2 periods.
If the signal type has not been determined at the end of the inhibit period, the "inhibit" LED flashes for as long as it is impossible to measure the speed.
Similarly, during operation, it is possible to inhibit the HSV relay at any time by closing S2.

After the end of the inhibit delay on starting, "Ti", as soon as the measured speed rises above the threshold value, the output relay changes state, from operating point to rest position ("alarm" operational state, 11-14 open and 11-12 closed).
It returns to the initial state when the speed falls back below the threshold minus the hysteresis (fixed at 5\% of the displayed threshold).
After a power break that has lasted at least 1500 ms , the relay is in the ("normal") operating state during the time delay and stays there until the speed is below the threshold.

Principles

HSV - Control of overspeed with latching

(1) Voltage (S1)
(2) Contact S2
(3) Threshold
(4) Inhibit LED
(5) Relay
(6) Inhibit delay on starting (Ti)
(7) 50 ms min .
(8) 1500 ms min .
(9) Speed

HSV - Overspeed with inhibition by S2

(1) Voltage (S1)
(2) Contact S2
(3) Threshold
(4) Inhibit LED
(5) Relay
(6) Inhibit delay on starting (Ti)
(7) Speed

When the HSV has been configured in "memory" mode, if overspeed is detected, the output relay stays in the rest state ("alarm") irrespective of any subsequent change in the speed of the process. It will not be able to revert to ("normal") operating state until contact S 2 closes (50 ms minimum). If, when S 2 reopens, the speed is too high, the relay reverts to the rest latched state ("alarm").
The HSV can also be reset by a power break (1500 ms minimum) ; the relay then returns to the ("normal") operating state for at least the duration of the time delay, irrespective of the speed of the process.

It is possible to inhibit the HSV relay by closing external contact S2 until the process has reached its nominal speed.

Dimensions (mm)

HSV

Connections

HSV - Input circuits

(1) S2 Inhibit - Reset
(2) Volt-free contact input $12 \mathrm{~V}, 9.5 \mathrm{k} \Omega$

Temperature control in lifts according to EN81

\rightarrow Temperature control relay for lift service rooms - according to EN81-35 mm

\square Control relay designed to monitor the temperature in lift machine rooms in accordance with standard EN81

- PT100 input
- Adjustable control between $5{ }^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$
\square Independent setting of high and low thresholds
- Built-in phase control option

HT81

HT81-2

HWT81

Part numbers			
	HT81	HT81-2	HWT81
Function	Under/Overtemperature window mode	Under/Overtemperature window mode	Under/Overtemperature window mode + phase sequence and failure
Nominal voltage (V)	$24 \rightarrow 240 \mathrm{~V} \sim$	$24 \rightarrow 240 \mathrm{~V}$ च	$24 \rightarrow 240 \mathrm{~V}$ こ
3-phase control	-	-	$3 \times 208 \rightarrow 480 \mathrm{~V}$ ~
Part numbers	84874110	84874120	84874130

Product adaptations

■ Customisable colours and labels

- Fixed threshold in the generic measurement range

- Fixed or adjustable time delay

- Adjustable fixed hysteresis

Accessories			
Description			Code
Removable sealable cover for 35 mm casing			84800001
General characteristics			
	HT81	HT81-2	HWT81
Inputs and measuring cicuit			
Phase control voltage range	-	-	$\begin{aligned} & 208 V \rightarrow 480 V \\ & (-15 \% /+10 \%)^{*} \end{aligned}$
Phase failure detection with regeneration	-	-	$>30 \%$ of the average of the 3 phases
Frequency of measured signal	-	-	$50 \rightarrow 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
Relay drop-out voltage (phase failure)	-	-	70\%
3-phase input resistors	-	-	$600 \mathrm{~K} \Omega$
Timing			
Maximum response time in the event of a 3-phase fault (ms)	-	-	500 ms
Output			
Type of output	1 single pole changeover relay	2 single pole NO relay	2 single pole NO relay
Insulation			
Galvanic isolation of power supply/measurement	Yes, between power supply and PT100 (transformer) Yes, between power supply and output (transformer and relay) Yes, between PT 100 and output (relay)	Yes, between power supply and PT100 (transformer) Yes, between power supply and output (transformer and relay) Yes, between PT100 and output (relay)	Yes, between power supply and PT100 (transformer) Yes, between power supply and output (transformer and relay) Yes, between power supply and 3-phase network (transformer) Yes, between 3-phase network and output (relay) No, between 3-phase network and PT100 (leakage current limited by several high-value resistors) Yes, between PT 100 and output (relay)
Nominal insulation voltage IEC 60664-1	250 V	250 V	400 V

Temperature control in lifts according to EN81

Principles

Overview

Temperature control relays for lift machine rooms are designed for monitoring the temperature between $5^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ according to standard EN81.

HT81 - Under/Overtemperature

1) High threshold
(2) Low threshold
(3) Hysteresis
4. Monitored temperature
(5) Threshold crossing delay adjustable on front face (Tt)

HT81-2 - Under/Overtemperature

High thresholdLow threshold
(3) Low threshold relay R1
(4) High threshold relay R2
(5) Hysteresis
(6) Monitored temperature
(7) Threshold crossing delay adjustable on front face (Tt)

HWT81 - Under/Overtemperature

High threshold
(2) Low threshold
(3) Hysteresis
(4) Monitored temperature
(5) Threshold crossing delay adjustable on front face (Tt)

HT81 operating principle:

As long as the temperature controlled by the PT100 stays between the two preset thresholds on the front face, the output relay is closed and the yellow LEDs are lit.
When the temperature exceeds one of the preset thresholds on the front face (upper or lower threshold), the preset time delay on the front face (Tt) is activated. The yellow LED corresponding to the threshold exceeded (upper or lower) flashes.
At the end of the time delay, if the temperature still exceeds one of the preset thresholds, the output relay opens and the yellow LED corresponding to the threshold is extinguished.
The output relay closes instantaneously (at about the response time for disappearance of a fault) when the temperature returns within the window of the two preset thresholds on the front face plus (or minus) the fixed hysteresis.
If the PT100 probe is wired incorrectly (missing or short-circuited) the output relays opens and all 3 LEDs flash.

HT81-2 operating principle:

As long as the temperature controlled by the PT100 stays between the two preset thresholds on the front face, the output relays are closed and their yellow LEDs are lit.
When the temperature exceeds one of the preset thresholds on the front face (upper or lower threshold), the preset time delay on the front face (Tt) is activated. The yellow LED corresponding to the threshold exceeded (upper or lower) flashes.
At the end of the time delay, if the temperature is still beyond one of the preset thresholds, the corresponding output relay opens and the yellow LED corresponding to the threshold exceeded is extinguished.
The output relay closes instantaneously (at about the response time for disappearance of a fault) when the temperature returns within the window of the two preset thresholds on the front face plus (or minus) the fixed hysteresis.
If the PT100 probe is wired incorrectly (missing or short-circuited) the output relays open and all 3 LEDs flash.

HWT81 operating principle:

As long as the temperature controlled by the PT100 stays between the two preset thresholds on the front face, the temperature relay is closed.
When the temperature exceeds one of the preset thresholds on the front face (upper or lower threshold), the preset time delay on the front face (Tt) is activated. The yellow temperature LED (R1) flashes. At the end of the time delay, if the temperature still exceeds the preset threshold, the output relay opens and the yellow LED is extinguished.
The output relay R1 closes instantaneously when the temperature returns within the window of the two preset thresholds on the front face plus or minus the fixed hysteresis.
The unit also monitors correct sequencing of phases L1, L2 and L3 of the 3-phase network and the total phase failure in the event of phase regeneration ($<70 \%$).
After a time delay on pick-up (t) and as long as the presence and sequence of the phases are correct, relay R2 and the R2 "phase" LED are active. When a fault appears, the "phase" relay opens and the R2 "phase" LED is extinguished instantly (response time from the appearance of a fault).
On disappearance of the fault, both relay R2 and the phase control LED are activated (response time from the disappearance of a fault). See "Phase failure and phase sequence" curve on page 67. If the PT100 probe is wired incorrectly (missing or short-circuited), output relay R1 opens and the yellow R1 LED flashes.

Dimensions (mm)

Connections

(1) 1 A fast-blow fuse or cut-out

HT81-2

(1) 1 A fast-blow fuse or cut-out

HWT81

Pump contro

3-phase and single phase pump control relay - 35 mm

Allows control and monitoring of single phase and 3-
phase pumps
Monitors phase sequence and phase failure
Checks for undercurrent to protect against running
dry
Checks for overcurrent to protect against overload
Digitial inputs for operation control logic
True RMS current measurement

Part numbers		Nominal voltage (V)	Code
Type	Measurement ranges	$208 \rightarrow 480 \mathrm{~V} \sim 3$-phase	84874200
HPC	$1 \mathrm{~A} \rightarrow 10 \mathrm{~A}$ in DC	$230 \mathrm{~V} \sim$ monophase	

Product adaptations

Accessories	Code
Description	84800001
Removable sealable cover for 35 mm casing	

General characteristics	
Supply	
Supply voltage Un	$\begin{aligned} & 208 \mathrm{~V} \rightarrow 480 \mathrm{~V} \sim 3 \text { 3-phase * } \\ & 230 \mathrm{~V} \sim \text { monophase } \end{aligned}$
Voltage supply tolerance	-12\% / +10\%
Operating range	$183 \rightarrow 528 \mathrm{~V}$ ~
~ supply voltage frequency	$50 / 60 \mathrm{~Hz} \pm 10 \%$
Galvanic isolation of power supply/measurement	No
Power consumption at Un	5 VA in \sim
Immunity from micro power cuts	500 ms
Inputs and measuring cicuit	
Measurement ranges	$\begin{aligned} & \begin{array}{l} 1 \rightarrow 10 \mathrm{~A} \sim \\ \mathrm{E} 1-\mathrm{L} 2: 1 \rightarrow 10 \mathrm{~A} \end{array} \end{aligned}$
Input resistance	E1-L2: 0.01Ω
Permanent overload at $25^{\circ} \mathrm{C}$	E1-L2: 11 A
Pulse overload < 1 sec at $25^{\circ} \mathrm{C}$	E1-L2: 50 A
Frequency of measured signal	$50 / 60 \mathrm{~Hz}$: $\pm 10 \%$
Max. measuring cycle time	$150 \mathrm{~ms} /$ True RMS measurement
Adjustment of upper threshold	$0.1 \rightarrow 10 \mathrm{~A}$
Adjustment of lower threshold	$0.1 \rightarrow 10 \mathrm{~A}$
Fixed hysteresis	5\% of displayed threshold
Display precision	$\pm 10 \%$ of full scale
Repetition accuracy with constant parameters	$\pm 0.5 \%$
Measuring error with voltage drift	$< \pm 1 \%$ across the whole range
Measuring error with temperature drift	$\pm 0.05 \% /{ }^{\circ} \mathrm{C}$
Timing	
Delays on power up (Ti)	$1 \rightarrow 60 \mathrm{~s}(0,+10 \%)$
Delay on threshold crossing	$0.1 \rightarrow 10 \mathrm{~s}(0,+10 \%)$
Repetition accuracy with constant parameters	$\pm 1 \%$
Reset time	2 s
Y2 minimum reset time	300 ms
Delay on pick-up	500 ms
Alarm on delay time max.	300 ms
Output	
Type of output	1 single pole changeover relay
Type of contacts	No cadmium
Maximum breaking voltage	250 V こ
Max. breaking current	$5 \mathrm{~A} \sim$
Min. breaking current	$10 \mathrm{~mA} / 5 \mathrm{~V}=-$
Electrical life (number of operations)	1×10^{5}
Breaking capacity (resistive)	1250 VA ~
Maximum rate	360 operations/hour at full load
Operating categories acc. to IEC 60947-5-1	AC 12, AC 13, AC 14, AC 15, DC 12, DC 13
Mechanical life (operations)	DC 14, 30×10^{6}
Insulation	
Nominal insulation voltage IEC 60664-1	400 V
Insulation coordination (IEC 60664-1 / 60255-5)	Overvoltage category III: degree of pollution 3
Rated impulse withstand voltage IEC 60664-1/60255-5	$4 \mathrm{kV}(1.2 / 50 \mu \mathrm{~s})$
Dielectric strength IEC 60664-1/60255-5	$2 \mathrm{kV} \sim 50 \mathrm{~Hz} 1 \mathrm{~min}$
Insulation resistance IEC 60664-1/ 60255-5	$>500 \mathrm{M} \Omega 500 \mathrm{~V}=-$

Pump control

General characteristics	
General characteristics	
Display power supply	Green LED
Display relay	Yellow LED
"Fault" indication	Yellow LED
Casing	35 mm
Mounting	On 35 mm symmetrical DIN rail, IEC/EN 60715
Mounting position	All positions
Material: enclosure plastic type VO to UL94 standard	Incandescent wire test according to IEC 60695-2-11 \& NF EN 60695-2-11
Protection (IEC 60529)	Terminal block: IP 20 Casing: IP 30
Weight	100 g
Connecting capacity IEC 60947-1	Rigid: $1 \times 4^{2}-2 \times 2.5^{2} \mathrm{~mm}^{2}$ 1×11 AWG -2×14 AWG Flexible with ferrules: $1 \times 2.5^{2}-2 \times 1.5^{2} \mathrm{~mm}^{2}$ 1×14 AWG -2×16 AWG
Max. tightening torques IEC 60947-1	$0.6 \rightarrow 1 \mathrm{Nm} / 5.3 \rightarrow 8.8$ Lbf.In
Operating temperature IEC 60068-2	$-20 \rightarrow+50^{\circ} \mathrm{C}$
Storage temperature IEC 60068-2	$-40 \rightarrow+70^{\circ} \mathrm{C}$
Humidity IEC 60068-2-30	$2 \times 24 \mathrm{hr}$ cycle 95\% RH max. without condensation $55^{\circ} \mathrm{C}$
Vibrations according to IEC/EN60068-2-6	$10 \rightarrow 150 \mathrm{~Hz}, \mathrm{~A}=0.035 \mathrm{~mm}$
Shocks IEC 60068-2-6	5 g
Standards	
Marking	CE (LVD) 73/23/EEC - EMC 89/336/EEC
Product standard	NF EN 60255-6 / IEC 60255-6 / UL 508 / CSA C22.2 ${ }^{\circ} 14$
Electromagnetic compatibility	Immunity EN 61000-6-2/IEC 61000-6-2 Emission EN 61000-6-4/EN 61000-6-3 IEC 61000-6-4/IEC 61000-6-3 Emission EN 55022 class B
Certitications	UL, CSA, GL pending
Conformity with environmental directives	RoHS, WEEE
Comments	
	* 3-phase mains with earth

Principles

HPC

Overview

The pump controller can operate on a single phase or 3-phase network. It provides 3 functions in one unit

- Checking current,
- Checking phase presence (in 3-phase mode),
- Checking phase sequence (in 3-phase mode).

It has two operating modes whose purposes is to control a pump based on two external signal inputs (Y 1 Y 2)
These two signals are controlled by volt-free contacts.
Faults are signalled via LEDs, distinguishing the origin of the fault.

Operating principle

Selecting the operating mode
A rotary switch on the front is used to select

- single control mode,
- dual control mode,
- single-phase or 3-phase network.

The position of this selector switch is only taken into account when the unit is powered up.
If the switch position changes while the unit is operating, all the LEDs flash but the product continues to work normally with the mode selected on energisation prior to the change of position.
The LEDs return to their normal state if the switch is reset to its initial position defined before the last energisation.

HPC - Single control mode

(1) Current fault
(2) Relay

3 Fault monitoring inhibit time on pump start-up (Ti)
(4) Delay timing in case of fault (Tt)

This mode is for controling a pump based on one external signal (Y1)
The relay output is closed when the signal is present at Y 1 (contact closed),
After a fault the relay remains open (even if the current returns to normal) and the module can be reclosed in two different ways:

- By a reset: cutting of power supply,
- Or by a reset through pressing an external contact (pushbutton for example) entering the second control input (Y2).

Principles

HPC - Dual control mode

1
Current fault
(2) Relay

3 Fault monitoring inhibit time on pump startup (Ti)
4. Delay timing in case of fault (Tt)

HPC - Overcurrent control

(1) Overcurrent
(2) Hysteresis
(3) Relay
(4) Fault monitoring inhibit time on pump startup (Ti)
5. Delay timing in case of fault (Tt)

HPC - Undercurrent control

(1) Undercurrent
(2) Hysteresis
(3) Relay
(4. Fault monitoring inhibit time on pump startup (Ti)
(5) Delay timing in case of fault (Tt)

This mode is for controlling a pump based on two external signals (Y1 and Y2). The output relay closes when both input signals are present (Y 1 and Y 2 closed). It will open as soon as either of these two signals is absent.

If the controller is configured in single phase, it monitors the current drawn by the pump. If the controller is configured in 3-phase, it monitors current, phase sequence and phase failure. If a phase fault is detected, the output relay opens immediately.
On energisation, the output relay cannot be closed if there is a phase fault or phase failure.

Current control

The under and overcurrent values are set by two independent potentiometers graduated from 1 to 10 A .
In case of a control error (low threshold higher than high threshold), the output relay opens and all the
LEDs flash to signal the error.
If a current fault occurs (under or overcurrent) the relay opens if the fault persists
beyond the preset threshold delay. When the current returns to a correct value, the output relay remains open. It can only be closed by a reset: either by de-energisation or by closing on external contact Y2 (in single control mode)
An inhibit delay (Ti) on energisation allows current peaks due to start-up of the motor to be disregarded.

Pump control

Dimensions (mm)

HPC

Connections

Connections

Phase and temperature control

Motor phase and temperature control relay - 35 mm

Control of 3-phase networks: phase sequence, phase
failure
Multi-voltage
True RMS measurement
Motor temperature control via PTC probes
With line break or probe short-circuit detection
Version with fault latching function and reset / test
LED status indication

Part numbers				
Type	Functions	Nominal voltage (V)	Phase control voltage range	Code
HWTM	Phase sequence, phase failure, motor temperature via PTC probe, test, memory	$24 \rightarrow 240 \mathrm{~V} \sim$	$3 \times 208 \rightarrow 3 \times 480 \mathrm{~V}$ ~	84873027
HWTM2	Phase sequence, phase failure, motor temperature via PTC probe, test, memory	$24 \rightarrow 240 \mathrm{~V} \sim$	$3 \times 208 \rightarrow 3 \times 480 \mathrm{~V}$ ~	84873028

Product adaptations

Customisable colours and labels

Accessories
Description Removable sealable cover for 35 mm casing General characteristics HWTM / HWTM2 Supply Supply voltage Un Voltage supply tolerance Operating range Polarity with DC voltage \sim supply voltage frequency Galvanic isolation of power supply/measurement Power consumption at Un Immunity from micro power cuts

General characteristics

Inputs and measuring cicuit 3-phase control	
Measurement ranges	$3 \times 208 \rightarrow 3 \times 480 \mathrm{~V}$ ~ *
Operating range	$176 \rightarrow 528 \mathrm{~V}$ ~
Frequency of measured signal	$50 / 60 \mathrm{~Hz} \pm 10 \%$
Input resistance	$602 \mathrm{~K} \Omega$ / line
Temperature control	
Maximum voltage of heat detection circuit	3.6 V (T1-T2 open)
Short-circuit current	7 mA (T1, T2 close circuit)
Maximum heat detector resistance at $20^{\circ} \mathrm{C}$	1500Ω
Trip threshold	$3100 \Omega \pm 10 \%$
Reset threshold	$1650 \Omega \pm 10 \%$
Short-circuit detection range	$0 \rightarrow 15 \Omega \pm 5 \Omega$
Resistance measurement temperature drift	$\pm 0.1 \% /{ }^{\circ} \mathrm{C}$ max.
Repetition accuracy with constant parameters	$\pm 0.5 \%$
Timing	
Delay on threshold crossing	300 ms max. (phase) 300 ms typical (temperature)
Response time for input Y1 and PB	50 ms typical
Reset time	10 s max. à 264 V ~
Delay on pick-up	500 ms
Output	
Type of output	2 NO relays
Type of contacts	No cadmium
Maximum breaking voltage	250 V ~
Max. breaking current	$5 \mathrm{~A} \sim$
Min. breaking current	$10 \mathrm{~mA} / 5 \mathrm{~V}$ こ
Electrical life (number of operations)	1×10^{4}
Breaking capacity (resistive)	1250 VA ~
Maximum rate	360 operations/hour at full load
Operating categories acc. to IEC 60947-5-1	AC12, AC13, AC14, AC15, DC12, DC13, DC14
Mechanical life (operations)	30×10^{6}
Insulation	
Nominal insulation voltage IEC 60664-1	400 V
Insulation coordination (IEC 60664-1 / 60255-5)	Overvoltage category III: degree of pollution 3
Rated impulse withstand voltage IEC 60664-1/60255-5	4 kV (1.2 / $50 \mu \mathrm{~s}$)
Dielectric strength IEC 60664-1/60255-5	2 kV AC 50 Hz 1 min .
Insulation resistance IEC 60664-1 / 60255-5	> $500 \mathrm{M} \Omega / 500 \mathrm{~V}=-$
General characteristics	
"Phase" relay status indication	Yellow LED
"Temperature" relay status indication	Yellow LED
Display power supply	Green LED
Casing	35 mm
Mounting	On 35 mm symmetrical DIN rail, IEC/EN 60715
Mounting position	All positions
Material: enclosure plastic type VO to UL94 standard	Incandescent wire test according to IEC 60695-2-11 \& NF EN 60695-2-11
Protection (IEC 60529)	Terminal block: IP20 Casing: IP30
Weight	107.1 g
Connecting capacity IEC 60947-1	Rigid: $1 \times 4^{2}-2 \times 2.5^{2} \mathrm{~mm}^{2}$ 1×11 AWG -2×14 AWG Flexible with ferrules: $1 \times 2.5^{2}-2 \times 1.5^{2} \mathrm{~mm}^{2}$ 1×14 AWG -2×16 AWG
Max. tightening torques IEC 60947-1	$0.6 \rightarrow 1 \mathrm{Nm} / 5.3 \rightarrow 8.8$ Lbf.In
Operating temperature IEC 60068-2	$-20 \rightarrow+50^{\circ} \mathrm{C}$
Storage temperature IEC 60068-2	$-40 \rightarrow+70^{\circ} \mathrm{C}$
Humidity IEC 60068-2-30	$2 \times 24 \mathrm{hr}$ cycle $95 \% \mathrm{RH}$ max. without condensation $55^{\circ} \mathrm{C}$
Vibrations according to IEC/EN60068-2-6	$10 \rightarrow 150 \mathrm{~Hz}, \mathrm{~A}=0.035 \mathrm{~mm}$
Shocks IEC 60068-2-6	5 g
Standards	
Marking	CE (LVD) 73/23/EEC - EMC 89/336/EEC
Product standard	NF EN 60255-6 / IEC 60255-6 / CEI 60034-11-2 / UL 508 / CSA C22.2 №14
Electromagnetic compatibility	Immunity EN 61000-6-2/IEC 61000-6-2 Emission EN 61000-6-4/EN 61000-6-3 IEC 61000-6-4/IEC 61000-6-3 Emission EN 55022 class B
Certifications	UL, CSA, GL pending
Conformity with environmental directives	RoHS, WEEE
Comments	
	* 3-phase mains with earth

Phase and temperature control

Principles

Overview

Relays HWTM and HWTM2 check the availability of the 3-phase network and the temperature of the motors using integrated PTC probes.
The "phase" and "temperature" control functions are independent of one another.
The 3-phase (208 to 480 V) network control verifies the sequence of phases L1, L2, L3 and their presence:

- the complete failure of a phase is detected, also in the event of regeneration (U measured $<0.7 \times \mathrm{Un}$).

The result of the check is indicated by the status of the "phase" output relay. NO contact 21-24 will be open in case of fault.
The temperature control accepts up to 6 PTC probes (positive temperature coefficient resistor) wired in series between terminals T1 and T2. A fault is reported if the resistance of the thermal detector circuit exceeds 3100Ω.
Return to normal is verified when the resistance falls below 1650Ω.
The result of the check is indicated by the status of the "temperature" output relay. NO contact 11-14 will be open in case of fault.
Opening of the thermal detector circuit has the same effect as high temperature (resistance exceeding 3100Ω) and is therefore interpreted as a fault. Total short-circuit of the thermal probe (s), detected when resistance is less than $15 \Omega \pm 5 \Omega$ is treated as a fault.

HWTM - Phase failure and phase sequence

Phase L1
(2) Phase L2
(3) Phase L3
(4) Relay R2
(5) 30% of Un

(1) Resistance between terminals T1 and T2 (2) Relay R1

HWTM2 - Phase failure and phase sequence

(1) Phase L1
(2) Phase L2
(3) Phase L3
(4) Relay R2
(5) 30% of Un

Control of 3-phase network

As soon as the phase sequence (L1 L2 L3) and phase amplitude symmetry ($\mathrm{D}<30 \%$) are considered correct, the contact of the output relay closes and, subject to the result of the temperature check, LED"R2" lights up.
In case of total failure or a drop in the amplitude of a phase (absence of phase with regeneration) or inversion of the phase sequence, the contact of the output relay opens and LED "R2" is extinguished.

Temperature control without latching

As soon as it is verified that the resistance of the thermal detector is between 15 and 3.100Ω, the contact of the output relay closes and, subject to the result of the phase control check, LED"R1" lights up.
If the resistance of the thermal detector circuit exceeds 3.100Ω, the output relay opens and LED "R1" is extinguished. After an overheating fault, the resistance must fall below 1.650Ω for the output relay contact to reclose and, subject to the result of the phase check, LED "R1" to light up. If the resistance falls below 15Ω (short-circuit), the output relay opens and LED "R1" is extinguished. As soon as it returns to between 15 and 3.100Ω, the contact of the output relay closes again and, subject to the result of the phase control check, LED"R1" lights up.

The configuration is taken into account on energisation of the relay HWTM2.
Selecting the operating mode:
Using the selector switch, select one of two modes:

- Thermal control without latching,
- Thermal control with latching.

NB: On energisation, the switch placed in one of the five intermediate positions keeps the relays in the open contact state and the error is signalled by the LEDs flashing simultaneously. The mode selector switch position is taken into account on energisation.
Changes made during operation have no effect: the active configuration may therefore be different from that indicated by the switch; relay HWTM2 operates normally but the change in configuration is signalled by both LEDs flashing simultaneously.

Principles

HWTM2 with latching

(1) Test/Reset
(2) Resistance between terminals T1 and T2
(3) Relay R1

HWTM2 without latching

(1)

Resistance between terminals T1 and T2 (2)

Relay R1

HWTM2 Test/Reset without latching

(1) Test/Reset
(2) Resistance between terminals T1 and T2
(3) Relay R1

HWTM2 Test/Reset with latching

(1) Test / Reset
(2) Resistance between terminals T1 and T2
(3) Relay R1

Latching (HWTM2)

The HWTM2 version has a rotary switch which can be used to configure the temperature control operating mode with or without latching.
In "memory" mode, when a fault has been recorded, the"temperature" relay latches in the open position.
Once the temperature has returned to a correct value, the relay can be unlatched (reset), either by pressing the "Test/Reset" pushbutton (50 ms minimum), or by closing (50 ms minimum) a voltfree contact between terminals Y1 and T1 (without parallel load).
The HWTM2 can also be reset, more abruptly, by switching it off and on again several times in succession (see reset time).

HWTM2 version has a "test/reset" button for checking the operating state of the temperature control: When the temperature is normal, pressing the "test/reset" button simulates overheating, the yellow LED is extinguished and the contact of the "temperature" output relay opens; if "memory" mode is active, the fault indication is latched (the button must be released for at least 50 ms , then pressed again to reset the function).

Using the "test/reset" button

HWTM2 version has a "test/reset" button for checking the operating state of the temperature control and resetting it after latching in "memory" mode.
For both functions, the button must be pressed and released for 50 ms .
When the temperature is normal, pressing the "test/reset" button simulates overheating, the contact of the "temperature" output relay opens and the "no fault" LED is extinguished.
If "memory" mode is inactive, the "fault" indication is maintained as long as the button is pressed. If "memory" mode is active, the "fault" indication is latched. The button must be released, then pressed again to reset the function.
In "memory" mode, if a fault has been detected and the temperature is now correct again, the "temperature" relay can be unlatched (reset) with the "test/reset" button'.
As long as the temperature is abnormal, i.e. as long as the resistance of the thermal detector circuit is greater than 3.100Ω or, having exceeded 3.100Ω it has not fallen back to below 1.650 Ω, pressing the "test/reset" button has no effect.

Phase and temperature control

Dimensions (mm)

HWTM

Connections

HWTM

1. 1 A fast-blow fuse or cut-out

HWTM2

(1) 1 A fast-blow fuse or cut-out

For further information, please consult our

web site:

- Applications: HVAC

- Applications : Pump and level control

■ Strong points of C-Lynx

\square Application : temperature control in lifts

\bigcirc
 Crouzet

Crouzet
 Across the Globe

EAUSTRIA

Crouzet GmbH
Zweigniederlassung Österreich
Spengergasse 1/3
Spengerga
1050 Wien
ÖSTERREICH
Tel. : +43 (0) 13685471
Tel. : +43 (0) 13685471
Fax: +43 (0) 13685472
F-mail : info-direkt@crouzet.com w-mail : info-direuzet.at

11 belgium
 Crouzet NV/SA

Koning Albert I Laan 40
40 Avenue Roi Albert I
1780 Wemmel
BELGIUM
Tel. : +32 (0) 24620730
Fax : +32 (0) 24610023
E-mail : com-be@crouzet.com www.crouzet.be

Elbrazil

Crouzet do Brazil Ltda
Rua Gal.Furtado Nascimento
740 - sala 77
Alto de Pinheiros / 05465-070
São Paulo - SP
BRAZIL
Tel. : +55 (11) 30269008
Fax : +55 (11) 30269009
E-mail : crz-infobrazi@@crouzet.com www.crouzet.com.br

Rehina

Crouzet Asia

(Shanghai) Limited
603-6F, Dynasty Business Ct
457 Wu Lu Mu Qi (N) Road
Shanghai, 200040
CHINA
Tel. : +86 (21) 62490910
Fax : +86 (21) 62490701
E-mail : com-cn@crouzet.com
www.crouzet.com

I/france

Crouzet Automatismes SAS
2 rue du Docteur Abel - BP 59
26902 Valence CEDEX 9
FRANCE
Tel. : +33 (0) 475448844 Fax : +33 (0) 475559803 E-mail : com-fr@crouzet.com www.crouzet.fr

Customer service

ONoIndiso 0825333350
(1) NoAzur Fax 0810610102

GERMANY

Crouzet GmbH
Otto-Hahn-Str. 3, 40721 Hilden
Postfach 203, 40702 Hilden Postach DEUTSCHLAND
Tel. : +49 (0) 21039 80-0
Tel. . +49 (0) 2103 80
ax: +49 (0) 21039 80-200 E-mail : info-direkt@crouzet.com ww.crouzet.de

Customer service

Tel. : +49 (0) 21039 80-108/176
Fax : +49 (0) 21039 80-250 E-mail : info-direkt@crouzet.com

EINDIA

Crouzet India
India Liaison Office
Unit No. 3-D
"SPL Enderley" III Floor, 26, Off Cubbon road Bangalore 560001 INDIA
Tel. : +91 (80) 32902245 Fax : +91 (80) 41238066 E-mail : Cr_bangabre@crouzetcom www.crouzet.co.in

Mitaly

Crouzet Componenti s.r.
Via Viganò De Vizzi 93/95 20092 Cinisello Balsamo (Mi) ITALIA
Tl.
el. : +39 (02) 66599220
Fax : +39 (02) 66599228
E-mail : crzit-microcontrol@crouzet.com www.crouzet.it

- 0 mexico

Automatismo Crouzet S.A. de C.V
Calzada Zavaleta 2505 - C Col Sta Cruz Buenavista C.P. 72150 - Puebla

MEXICO
Tel. : +52 (222) 4097000 Fax : +52 (222) 4097810 018000876333 www.crouzet.com

D 0

SPAIN/PORTUGAL

Crouzet Ibérica

C/ Aragón 224, $2^{\circ} 2^{2}$
08011 Barcelona ESPAÑA
Tel. : +34 (93) 4843970
Fax : +34 (93) 4843973
E-mail : es-consultas@crouzet.es www.crouzet.es

FIIHEDEN

Crouzet AB
Malmgårdsvägen 63
Box 11183
10061 Stockholm
SVERIGE
SVERIGE
Tel. : +46 (0) 855602200
Fax : +46 (0) 855602229
E-mail : info-direkt@crouzet.com www.crouzet.se

[HswitzerLAND

 Crouzet AGGewerbepark - Postfach 56 5506 Mägenwil
SCHWEIZ
Tel. : +41(0) 628873030
Fax : +41(0) 628873040
E-mail : info-direkt@crouzet.com www.crouzet.ch

THE NETHERLANDS

Crouzet BV

Industrieweg 17
2382 NR Zoeterwoude
NEDERLAND
Tel. : +31 (0) 71-581 2030
Fax : +31 (0) 71-541 3574
E-mail : com-nl@crouzet.com www.crouzet.nl

ET UNITED KINGDOM

 Crouzet LtdIntec 3 Wade Road
Basingstoke Hampshire Basingstoke
RG24 8NE
UNITED KINGDOM
Tel. : +44 (0)1256 318900
Fax : +44 (0)1256 318901 E-mail : info@crouzet.co.uk www.crouzet.co.uk

四 Illusacanada
Crouzet North America
204 Airline Drive, suite 300
75019 Coppell Texas
USA
Tel. : +1 (972) 4712565
Fax : +1 (972) 4712560
E-mail : customer.service@us.crouzet.com www.crouzet-usa.com

(OTHER COUNTRIES

Crouzet Automatismes SAS 2 rue du Docteur Abel - BP 59 26902 Valence CEDEX 9 FRANCE
Tel. : +33 (0) 475802102
Fax : +33 (0) 475448126
E-mail : com-ex@crouzet.com www.crouzet.com

Distributed by :

Crouzet Automatismes SAS

2 rue du Docteur Abel - BP 59
26902 Valence CEDEX 9
FRANCE

www.crouzet.com

Warning:
The product information contained in this catalogue is given purely as information and does not
The product information contained in this catalogue is given purely as information and does not Automatismes and its subsidiaries reserve the right to modify their products without notice. It is mperative that we should be consulted over any particular use or application of our products and it is the responsability of the buyer to establish, particularly through all the appropriate tests, tha the product is suitable for the use or application. Under no circumstances will our warranty apply use in coniunction with other electrical or electronic components, circuits or assemblies, or any other unsuitable material or substance) which has not been expressly agreed by us prior to the sale of our products.

[^0]: - Customisable colours and labels
 - Single voltage in the generic range
 - Adjustable fixed hysteresis
 - Fixed or adjustable time delay except for MWG

 Dedicated adaptation on MWG:

 - Adjustable regeneration rate

 Dedicated adaptation on MWU:
 \square Fixed undervoltage threshold in the generic range
 Dedicated adaptation on MWA:
 \square Fixed asymmetry threshold in the generic range
 Dedicated adaptations to MWUA:

 - Fixed undervoltage threshold in the generic range
 - Fixed overvoltage threshold in the generic range
 - Fixed asymmetry threshold in the generic range or adjustable 5 $\boldsymbol{\rightarrow} \mathbf{2 5} \%$

[^1]: - Customisable colours and labels
 - Single voltage in the generic range
 - Fixed or adjustable time delay
 - Adjustable fixed hysteresis

 Adaptations dedicated to M3US:

 - Fixed threshold in the generic range

 Adaptations dedicated to H3US:

 - Fixed threshold in the generic range

 Adaptations dedicated to H3USN:

 - Fixed overvoltage threshold in the generic range

 ■ Fixed undervoltage threshold in the generic range

[^2]: If "with memory" mode has been selected, the relay opens and stays in this position when threshold crossing is detected.
 The power supply must be disconnected to reset the product.

[^3]: If "with memory" mode has been selected, the relay opens and stays in this position when threshold crossing is detected.
 The power supply must be disconnected to reset the product.

[^4]: - Customisable colours and labels

 I Fixed or adjustable time delay
 Adaptation dedicated to HNM:
 \square Fixed threshold in the generic measurement range

