

Web Site: www.parallax.com
Forums: forums.parallax.com
Sales: sales@parallax.com
Tech Support: support@parallax.com

Office: (916) 624-8333
Fax: (916) 624-8003
Sales: (888) 512-1024
Tech Support: (888) 997-8267

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 1 of 21

Parallax Wi-Fi Module Firmware Guide
(#32420D DIP version, and 32420S SIP version)
This documentation is written for Parallax Wi-Fi Module firmware v1.0 (2016-11-02 18:04:30).
For details about the Parallax Wi-Fi Module features and hardware, see the Downloads section of
the 32420S or 32402D product pages at www.parallax.com.

Table of Contents
Module Interfaces

Wireless Interfaces
Serial Interfaces

Serial Interface Modes
Setting Command Mode
Setting Transparent Mode

Network Commands
User File System
Propeller Loader
WebSockets
Settings

Serial Commands
Serial Command Format

Serial Stream Example (22 bytes on DI pin)
Example Serial Command (DI pin)
Example Serial Response (DO pin)
Microcontroller Networking

General
Connections
WEB/HTTP
HTTP
Settings

http://www.parallax.com/
http://www.parallax.com/

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 2 of 21

Tokens
Command Name Tokens
Parameter Tokens

Error Codes
Network Codes

References

Module Interfaces
The Parallax Wi-Fi Module provides a wireless communication link between a microcontroller and
IP-networked devices. It has two wireless network interfaces, Station and AP (a.k.a. "Soft AP") for
communicating with wireless devices, and one wired interface (called Serial) for communicating
with a microcontroller.

Wireless Interfaces
One (or both) of the wireless interfaces (Station and/or AP) can be made active at any time.
Typically, the AP (SoftAP) interface is used to configure its Station interface to connect to a shared
Wi-Fi Access Point for long-term use. After configuration, the AP (SoftAP) interface should be
turned off since it is "open" (insecure). However, the SoftAP interface can serve as the sole wireless
interface for long-term use, if desired.

With the module powered up, its Associate LED (marked ASC or ASSOC) indicates which wireless
interface is active and what kind of connectivity is available.

Associate (ASC) LED Display
 STA

(no IP)
no connection

STA
(has IP)

connect via STA

AP

connect via AP

STA+AP
(no STA IP)

connect via AP

STA+AP
(has STA IP)

connect via STA or AP

LED OFF long OFF, blink ON ON long OFF, long ON long OFF, blink ON,
long ON

Any visible "ON" state of the Associate LED indicates there is some kind of wireless access possible, either via the STA (Station) or
AP (Soft AP) interfaces. When the AP interface is active, it always has an IP address- wireless access to the module is always
possible via the AP interface during any of the last three conditions shown.

Any of the above modes can be configured via the module's Serial interface or Wireless interface
(using Serial or Network commands) or via the convenient Wi-Fi Networks web page,
http://<ip_address>/wifi/wifi.html, as long as there's an available wireless connection. In a
situation where there is no wireless connection (STA mode with no IP address) the module can be
forced to turn on its AP (SoftAP) interface by toggling its RES pin low/high four times within two
seconds. If the module is plugged into the WX socket of a Parallax development board, the board's
Reset button can pressed/released at this rate to force AP mode, then a Wi-Fi device
(laptop/tablet/smartphone) can connect to the module's SSID to get to it's Wi-Fi Networks web
page.

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 3 of 21

Commands for use over the wireless interfaces are detailed in the Network Commands section.

Serial Interfaces
The Serial interface consists of direct-connect pins, Data Out (DO) and Data In (DI), that use an
asynchronous serial protocol similar to RS-232. The DO and DI pins are the only connections used
to establish a bi-directional wired communication interface with a microcontroller. Commands for
use over the wired serial interface are detailed in the Serial Commands section.

Serial Interface Modes
There are two modes of communication over the Serial interface; Transparent and Command mode.
Transparent mode lets data pass through without modification. Command mode provides run-time
control to an attached microcontroller; allowing it to set or check module settings, establish
connections, and process communications in special ways. By default, the module’s Serial interface
begins in Transparent mode.

Setting Command Mode
The serial interface can be set to Command mode in three ways:

1. Via its Settings web page
a. Connect through its SoftAP interface:

i. Configure a device (computer, smartphone, etc.) to join its access point
ii. Navigate the device's browser to http://192.168.4.1/settings.html

-- OR --
b. Connect through its Station interface:

i. Use a device (computer, smartphone, etc.) on the same shared access point
ii. Navigate the device's browser to http://<module_IP_address>/settings.html

1. Find the module IP address with the command-line Prop-Loader tool
a. $ proploader -W

-- THEN --
c. Change the Serial Commands setting to Enabled

2. Via a network command
a. POST /wx/setting?name=cmd-enable&value=1

3. Via a Break Condition on the Serial interface itself
a. Set the DI pin low for ≥ 30

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝐶𝐶𝐶𝐶𝐵𝐵 𝑅𝑅𝐶𝐶𝐶𝐶𝑅𝑅
seconds

Once in Command mode, communication from the microcontroller will be interpreted and
processed as special commands, or passed through as-is, depending on the context and format of
that communication.

http://192.168.4.1/settings.html
https://github.com/parallaxinc/proploader/releases

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 4 of 21

Setting Transparent Mode
The serial interface can be set to Transparent mode in three ways:

1. via its Settings web page
a. Follow steps 1a or 1b, above, then,
b. Change the Serial Commands setting to Disabled

2. via a network command
a. POST /wx/setting?name=cmd-enable&value=0

3. via a serial command
a. SET:cmd-enable,0

In Transparent mode all communication from the microcontroller passes through to the network
as-is. This mode uses the module as a wireless serial interface, transporting serial traffic using the
RS-232-like asynchronous serial protocol over the DO and DI pins, and transporting IP traffic using
a subset of the TELNET protocol over port 23.

Network Commands
The following are commands (also known as requests) for use over the module's wireless network
interface. They can be issued via a web browser (using a special set of web pages written in HTML
and Javascript, for example), or with developer tools or dedicated applications (that communicate
using HTTP, WebSocket, or TCP protocols). A handy developer tool is the Chrome browser
application "Postman" found in the Chrome web store.

IMPORTANT: Network commands and arguments are case-sensitive.

Network Command Syntax Legend:
BOLD - command or setting name
Normal - case-sensitive command argument; must be entered exactly as shown
Italicized - item must be replaced by user input
[optional...] - square brackets denote optional, possibly repeating items
<data> - stream of data delivered in the body of the command

User File System
The user file system is a built-in, non-volatile storage area for hosting custom files. Users can store
custom files (such as web pages and microcontroller application images) for client access at a later
time. For example, after placing an html page called “test.html” into the user file system using a
POST command, the file can be accessed by entering http://<module_ip_address>/files/test.html
into their web browser.

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 5 of 21

POST /userfs/format
Reformats the user file system, removing all files from the logical /files path in the
process.

POST /userfs/write?file=name <file_data>

Writes a file called name to the user file system containing <file_data> (from the
body of the POST request). If a file already exists with that name, it is marked as
deleted and the new file replaces it. However, the space occupied by the old copy is
not recovered until reformatted.

GET /files/name

Retrieves the name file from the user file system.
For example, if a file named “myfile.html” exists in the file system, the command
“GET http://<module_ip_address>/files/myfile.html” will retrieve it.

Propeller Loader
The Parallax Wi-Fi Module includes built-in Propeller application loader capability through the use
of these POST commands.

POST /propeller/load?argument [&argument...] <propeller_application>
Loads a small (< 2 KByte) Propeller .binary file to Propeller RAM over the HTTP
connection. This is commonly used to deliver a small second-stage loader
application which then handles a full Propeller application delivery over TCP. The
body of the POST contains the Propeller application to load. The body of the reply
from the module contains the response sent by the Propeller, if any.

Arguments
baud-rate=rate

The baud rate used for loading the Propeller application image. If missing,
the default is that of the module’s “loader-baud-rate” setting.

final-baud-rate=rate
The baud rate that is switched to after the load completes. This determines
the Serial interface speed for use during Propeller run time. If missing, the
default is that of “baud-rate” (if provided) or “loader-baud-rate” (if “baud-
rate” not provided).

reset-pin=pin
The module I/O pin used to reset the Propeller – i.e. it is connected to the
Propeller’s RESn pin. If missing, the default is that of the module’s “reset-
pin” setting.

response-size=size
The size of the response expected from the Propeller after the loaded
Propeller application starts. This is typically used to alert the caller that the

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 6 of 21

second-stage loader is initialized and ready for further communication. If
missing, or if its value is zero, no response is expected from the Propeller
application.

response-timeout=ms
The number of milliseconds (ms) to wait for a response from the Propeller
application. This is only used if response-size is set to a non-zero value.

<propeller_application>

The Propeller application image to load. This data should be provided in the
body of the POST command and must be less than 2 Kb (kilobytes) in size.

POST /propeller/load-file?argument [&argument...]

Loads a Propeller application to RAM from the user file system. Application must be
a .binary image file previously stored using “POST /userfs/write...”.

Arguments
file=name

The name of the file to load. This must be a .binary image file previously
stored in the user file system with “POST /userfs/write...”.

baud-rate=rate
The baud rate used for loading the Propeller application image. If missing,
the default is that of the module’s “loader-baud-rate” setting.

final-baud-rate=rate
The baud rate that is switched to after the load completes. This determines
the Serial interface speed for use during Propeller run time. If missing, the
default is that of “baud-rate” (if provided) or “loader-baud-rate” (if “baud-
rate” not provided).

reset-pin=pin
The module I/O pin used to reset the Propeller – i.e. it is connected to the
Propeller’s RESn pin. If missing, the default is that of the module’s “reset-
pin” setting.

POST /propeller/reset [?reset-pin=pin]

Resets the Propeller; similar to pressing and releasing the Reset button on the
Propeller development board.

Pin

The module I/O pin used to reset the Propeller – it is connected to the
Propeller’s RESn pin. If missing, the default is that of the module’s “reset-
pin” setting.

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 7 of 21

WebSockets
GET /ws/*

Used to establish a websocket connection to the module. The header must contain
the fields "Upgrade: websocket" and "Connection: Upgrade".

Settings
The Parallax Wi-Fi Module has many settings that determine default modes and behaviors. Using
the settings commands below, they can be retrieved and adjusted in either a temporary or
persistent fashion.

GET /wx/setting?name=setting
Retrieves the value of the named setting. Note: If setting is an I/O pin, such as pin-
gpio2, the GET command will set the I/O pin to an input direction and read its state,
leaving it set as an input. Use the POST command to set an I/O pin to an output.

Settings
version (read only)

View the firmware version string.
module-name

The module name appears as its SSID. This is limited to 32 characters.
wifi-mode

Module Wi-Fi mode can be "STA" (Station), "AP" (SoftAP), or both modes at
once: "STA+AP" (Station+SoftAP).

wifi-ssid (read only)
View the currently connected access point SSID, if any.

station-ipaddr (read only)
View the current Station IP address – if connected in STA (Station) mode to
an access point.

station-macaddr (read only)
View the Station MAC address – a fixed address uniquely identifying the STA
(Station) wireless interface.

softap-ipaddr (read only)
 View the current SoftAP IP address – if serving in AP (SoftAP) mode.
softap-macaddr (read only)

View the SoftAP MAC address – a fixed address uniquely identifying the AP
(SoftAP) wireless interface.

cmd-start-char
The character used to denote the start of a Serial interface command or
response. The default is 0xFE (254).

cmd-enable

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 8 of 21

Enable or disable Command mode on the Serial interface. When command
mode is disabled, all data is passed through as-is (transparently) in both
directions between the network and the attached microcontroller. Value can
be 0 (disabled; the default) or 1 (enabled).

cmd-events
Enable or disable the delivery of events on the Serial interface. When events
are disabled, notifications of connections, disconnections, and the arrival of
data are reported through the POLL command. When events are enabled,
notifications of connections, disconnections, and arrival of data are sent to
the MCU immediately. The form of these notifications is identical to the
responses to the POLL command except that the “=” is replaced by a “!”.
Value can be 0 (disabled; the default) or 1 (enabled).

loader-baud-rate
The baud rate of the Serial interface used for the Propeller Loader process.
See Propeller Loader. Valid values are: 1200, 4800, 9600, 19200, 38400,
57600, 74880, 115200 (the default), 230400, 460800, and 921600. The
proploader program, and the applications that use it (like SimpleIDE),
always override this setting.

baud-rate
The baud rate of the Serial interface when not in the process of loading code.
Valid values are: 1200, 4800, 9600, 19200, 38400, 57600, 74880, 115200
(the default), 230400, 460800, and 921600.

stop-bits
The number of stop bits per byte on the Serial interface when not in the
process of loading code. Value can be 1 (the default), 1.5, or 2.

dbg-baud-rate
The baud rate of serial debug data on the module’s DBG pin. Valid values
are: 1200, 4800, 9600, 19200, 38400, 57600, 74880, 115200 (the default),
230400, 460800, and 921600.

dbg-stop-bits
The number of stop bits per byte of serial debug data on the DBG pin. Value
can be 1 (default), 1.5, or 2.

reset-pin
The I/O pin used to reset the Propeller; default is 12. The proploader
program, and applications that use it (like SimpleIDE), always override this
setting.

connect-led-pin
The I/O pin used to indicate the module is associated with an access point
(in Station mode); default is 5. This pin is connected to the Associate LED
(ASC) on the module and on some development boards.

rx-pullup

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 9 of 21

Determines whether or not a pullup resistor is enabled on the DI pin. This is
needed by some non-Parallax Wi-Fi ESP-based modules. Value 0 (default) =
disabled; value 1 = enabled.

pin-gpio0
The logic level (0 or 1) of the PGM pin.

pin-gpio1
The logic level (0 or 1) of the RX pin.

pin-gpio2
The logic level (0 or 1) of the DBG pin.

pin-gpio3
The logic level (0 or 1) of the TX pin.

pin-gpio4
The logic level (0 or 1) of the SEL pin.

pin-gpio5
The logic level (0 or 1) of the ASC pin.

pin-gpio12
The logic level (0 or 1) of the DTR pin.

pin-gpio13
The logic level (0 or 1) of the CTS pin.

pin-gpio14
The logic level (0 or 1) of I/O pin 14.

pin-gpio15
The logic level (0 or 1) of the RTS pin.

POST /wx/setting?name=setting&value=value
Adjusts a module setting to value. Valid settings are those not marked as "(read
only)" in the GET command descriptions, above. Note: If setting is an I/O pin, such
as pin-gpio2, the POST command will set the I/O pin to an output direction during
the process of setting its state. Use the GET command to set an I/O pin to an input.

Setting

The name of the desired setting; described in the GET command, above.
Value

The value to change the setting to. Each setting has a range of values
described in the GET command, above.

POST /wx/save-settings

Makes the current module settings persistent– saved across module resets and
power cycles. Without this command, all changes to settings will only last during
the current module session.

POST /wx/restore-settings

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 10 of 21

Restores the module settings from persistent storage. Use this to undo temporary
changes to settings.

POST /wx/restore-default-settings
Restores the factory default module settings. This has a temporary effect unless
followed by a “POST /wx/save-settings” command.

Serial Commands
The commands in this section are for use over the wired serial interface (DI and DO pins). They can
be issued via an attached microcontroller using the RS-232-like asynchronous serial protocol.

IMPORTANT: For any serial commands to be processed correctly, the module must first be
placed in Command mode. See the Setting Command Mode section to do this.

Serial Command Format
Commands are expressed in either text form, like "CLOSE" (five characters), or in token form, like
232 (or hexadecimal E8; one byte which means CLOSE). The module's command interpreter
automatically understands each form but always responds back in text form. Text form is easier to
read and type on a terminal, with required colon ':' and comma ',' delimiters, and token form is
convenient for a microcontroller to transmit (extra characters and delimiters are eliminated). See
the Tokens section for a list of command and argument tokens.

Command transmissions to the Wi-Fi Module always start with A begin marker byte (B) and finish
with an end marker byte (E). The byte values of the begin and end markers themselves may be
configurable in future firmware, so all syntax examples show them as the symbols B and E . By
default, the begin (B) marker is a byte value of 254 (hexadecimal FE) and the end (E) marker is a
byte value of 13 (hexadecimal 0D; also known as a carriage return or as “\r” in some programming
languages).

Serial Stream Example (22 bytes on DI pin)

- p a s s t h r u - B C O M M A N D E . . .

In command mode, all data bytes on the serial interface's DI pin leading up to a begin (B) marker
are passed through to the wireless interface. Data that appears in-between a begin (B) and end (E)
marker is parsed by the Wi-Fi Module as a command. Data immediately after the end (E) marker is
passed through to the wireless interface– except for after SEND and REPLY commands which
specify that a certain number of bytes of binary payload follows. Binary payload is not translated; it
can contain any data bytes, even those equivalent to the begin (B) and end (E) markers without
problem.

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 11 of 21

Data received on the wireless interface is processed by the module and stored until the
microcontroller requests it (with POLL or RECV, for example) at which point the Wi-Fi Module
formats it as specified by the command and transmits it on the serial interface's DO pin.

Example Serial Command (DI pin)
Using these rules, the example syntax for the CLOSE command is:

B CLOSE:handle_id E
To transmit this command in text form (8+ bytes):

● send the begin byte value (254 by default)
● followed by the six characters "CLOSE:"
● then one or more characters representing the decimal value handle_id
● and finally the end byte value (13 by default)

To transmit this command in token form (5 bytes):
● send the begin byte value (254 by default)
● followed by the CLOSE command's token byte value 232
● then the byte indicator value 252 and the byte-sized value handle_id
● and finally the end byte value (13 by default)

Command responses from the Wi-Fi Module always start with two bytes, a begin (B) marker
followed by an equal sign (=), and finish with an end (E) marker.

Example Serial Response (DO pin)
A successful CHECK wifi-mode command responds in the following form:

b = S,mode E
Assuming the current mode is STA+AP, the response will be (11 bytes):

● the begin byte value (254 by default)
● the nine characters "=S,STA+AP"
● and finally the end byte value (13 by default)

Microcontroller Networking
A microcontroller attached to the Wi-Fi Module's serial interface uses serial commands to set up
Listeners and Connections to actively manage communication with the network. In this way, the
Wi-Fi Module + microcontroller pair becomes a server and/or client. Listeners stay active until the
microcontroller issues a CLOSE command or a Break Condition. Connections stay active until either
the remote side closes the connection or the microcontroller issues a Break Condition.

While in Command mode, any Break Condition issued on the DI pin will deactivate (clear) all
Listeners and Connections that were previously set up and will leave the serial interface in
Command mode.

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 12 of 21

IMPORTANT: Serial commands and arguments are case-sensitive.

Serial Command Syntax Legend
BOLD - command or setting name
Normal - case-sensitive command argument; must be entered exactly as shown
Italicized - item must be replaced by user input
[optional] - square brackets denote optional items
<data> - stream of 1 or more data bytes delivered immediately after the command

General
b (empty) E

A request that consists of a begin (B) marker followed immediately by an end (E)
marker will do nothing but respond with b = S,0 E . This empty command provides a
way for the microcontroller to check if the Wi-Fi Module is functioning.

Connections
b LISTEN:protocol,path E

Activate a listener process to monitor HTTP or WebSocket protocol activity on port
80 with a specified path. Remote clients that connect to, request action of, and
disconnect from path are noted by the listener and cause it to alert the attached
microcontroller via the POLL command.

Protocol

The Internet protocol to listen for. Value can be “HTTP” or “WS”
(WebSocket), or corresponding token values, to establish a port 80 listener.

Path

The path part of the URL that the remote client uses to access this module
and its resources. The path can end in an asterisk ‘*’ to match anything that
begins with path.

Returns b = S,id E on success, or b = E,code E on error; see Error Codes. Use the
returned listener id with PATH or CLOSE commands.

There are a maximum of four listeners available. Issuing additional LISTEN
commands when all four listeners are already established will result in a response
of b = E,4 E (NO_FREE_LISTENER) until a CLOSE command is used to free a listener.

Using LISTEN, the microcontroller tells the module what incoming requests it is
able to handle – specifically supporting a particular protocol on port 80 and

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 13 of 21

targeting one or more URL paths. The module stores these paths and protocols in
available listeners. When an HTTP or WebSocket connection is attempted by a
client, the module checks for any active listeners that match the path and protocol. If
it finds a match, it assigns an unused connection and accepts the request, storing
any information about the request in the connection. If there is no match, or all
connections are currently used, it rejects the request.

The microcontroller should monitor for related events (such as described above)
using the POLL command, and must respond accordingly for the request to be
processed properly.

There is a one-to-many relationship between listeners and connections since clients
can make multiple requests on the same path and protocol while the microcontroller
is processing them. When the microcontroller calls POLL, the module looks through
its active connections and, for those that were accepted by a listener, delivers a ‘G’
(GET), ‘P’ (POST), or ‘W’ (WebSocket) response plus the associated connection
handle and listener id. The microcontroller can then use the connection handle to
fetch things like arguments or body content, and in the case of HTTP, send a REPLY.

HTTP connections are automatically closed after a REPLY is sent, freeing that
connection handle for future requests; however, WebSocket connections must be
explicitly terminated by calling CLOSE. Note that an HTTP connection can also be
closed manually with the CLOSE command if the microcontroller does not intend to
service the request.

b CONNECT:address,port E

Attempt a TCP connection to address on port.

Address

The destination address of the target to connect to.
Port

The port number to attempt communication on.

Returns b = S,handle E on success, or b = E,code E on error; see Error Codes. Use the
returned connection handle with PATH, CLOSE, SEND, or RECV commands.

There are a maximum of four connections available; shared between successful
CONNECT requests and active listener connections. Issuing additional CONNECT
commands when all four connections are already established will result in a
response of b = E,5 E (NO_FREE_CONNECTION) until a CLOSE command is used to
free a connection.

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 14 of 21

b CLOSE:handle_id E
Terminate an established connection or listener via its handle or id (respectively),
freeing it to rejoin the available connection or listener pools.

Handle_id

The connection handle or listener id to terminate.

Returns b = S,0 E on success, or b = E,code E on error; see Error Codes.

b POLL[:filtermask] E
Check for activity like incoming HTTP GET/POST requests, HTTP/WebSocket/TCP
connections/disconnections, and incoming WebSocket/TCP data.

Optionally, the event activity can be filtered with filtermask, a 32-bit binary value
where each bit corresponds to a connection handle and limits event responses to
just those connections. Example: b "POLL:"1<<5 E will cause the module to
respond with an event only if one has occurred on connection handle 5.

Returns event notifications in the form of event_char:value1,value2 as shown below.
Value1 and value2 have different meanings depending on event_char and the
context of the response.

b = G:handle,id E

Received HTTP GET request that matched a listener id’s path and is now
assigned to the connection handle for processing.

Handle

The connection identifier to use for this request.
Id

The identifier of the listener that matched the request.
Use:

● PATH:handle to get the associated connection path
● PATH:id to get the associated listener path (which may end in ‘*’)
● Id as a unique identifier of the associated listener; alternative of

using PATH:id or PATH:handle and parsing the path
● ARG:handle,... to retrieve HTTP GET query arguments
● REPLY:handle,... [+ SEND:handle,...] to respond to GET request

The ‘G’ event connection handle is automatically closed after a REPLY or
REPLY+SEND is used to respond to the request. Do not manually CLOSE a
‘G’ event connection handle except to reject the request.

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 15 of 21

b = P:handle,id E
Received HTTP POST request that matched a listener id’s path and is now
assigned to the connection handle for processing.

Handle

The connection identifier to use for this request.
Id

The identifier of the listener that matched the request.
Use:

● PATH:handle to get the associated connection path
● PATH:id to get the associated listener path (which may end in ‘*’)
● Id as a unique identifier of the associated listener; alternative of

using PATH:id or PATH:handle and parsing the path
● ARG:handle,... to retrieve HTTP POST query/body arguments
● RECV:handle,... to get the HTTP body
● REPLY:handle,... [+ SEND:handle,...] to respond to POST request

The ‘P’ event connection handle is automatically closed after a REPLY or
REPLY+SEND is used to respond to the request. Do not manually CLOSE a
‘P’ event connection handle except to reject the request.

b = W:handle,id E

Received a WebSocket request that matched a listener id’s path and is now
assigned to the connection handle for processing.

Handle

The connection identifier to use for this request.
Id

The identifier of the listener that matched the request.
Use:

● PATH:handle to get the associated connection path
● PATH:id to get the associated listener path (which may end in ‘*’)
● Id as a unique identifier of the associated listener; alternative of

using PATH:id or PATH:handle and parsing the path
● SEND:handle,... to transmit data to the remote
● POLL to wait for ‘D’ events, then RECV:handle,... to receive data

The ‘W’ event connection handle is persistent; it remains open until it is
manually CLOSEed, or is terminated by the remote. The connection handle
can not be reused for future events if it is not closed first; make sure to close
it when it has completely served its purpose.

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 16 of 21

b = D:handle,size E
WebSocket or TCP data was received. The ‘D’ event means data of size
arrived on an already-established WebSocket or TCP connection handle.

Handle

The connection identifier to use for this request.
Size

The number of bytes of data received.
Use:

● PATH:handle to get the associated connection path (if WebSocket)
● Handle as a unique identifier of the associated WebSocket or TCP

connection; alternative of using PATH:handle and parsing the path
● RECV:handle,... to receive the incoming data
● SEND:handle,... to transmit data to the remote

The ‘D’ event connection handle is persistent; it represents an established
WebSocket or TCP connection and remains open until it is manually
CLOSEed, or is terminated by the remote. The connection handle can not be
reused for future events if it is not closed first; make sure to close it when it
has completely served its purpose.

b = S:handle,0 E
A REPLY or SEND operation completed successfully.

Handle

The connection identifier for the REPLY or SEND that completed.

b = X:handle,code E
A connection handle was disconnected due to reason code.

Handle

The connection identifier associated with this event.
Code

The communication event reason; see Network Codes.

b = N:0,0 E

No connection activity has occurred since the last POLL command.

b = E:handle,code E
A communication error occurred.

Handle

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 17 of 21

The connection identifier associated with this error.
Code

The communication error code; see Error Codes.

b RECV:handle,max_count E

Retrieve incoming HTTP body or WebSocket/TCP data.

Handle

An active connection handle; returned by CONNECT or POLL.
Max_count

The maximum number of bytes to receive.

Returns b = S,count E (on success) followed by count bytes up to max_count of
payload, or returns b = E,code E on error; see Error Codes.

b SEND:handle,count E <data>

Transmit WebSocket/TCP data, or extended HTTP body (after REPLY command).

Handle

An active connection handle; returned by CONNECT or POLL.
Count

The number of bytes of <data> in this transmission.
<data>

The count-bytes of payload to send to the remote.

Returns b = S,0 E on success, or b = E,code E on error; see Error Codes.

WEB/HTTP
b PATH:handle_id E

Retrieve the path associated with a connection handle or listener id.

Handle_id

An active connection handle or listener id; returned by LISTEN or POLL.

Returns b = S,path E on success, or b = E,code E on error; see Error Codes.

HTTP
b ARG:handle,name E

Retrieve HTTP GET/POST’s name argument (in query or body) on connection
handle.

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 18 of 21

Handle

An active connection handle; returned by POLL.
Name

The argument name to retrieve.
Returns b = S,value E on success, or b = E,code E on error; see Error Codes.

b REPLY:handle,rcode,[total_count[,count]] E [<data>]
Transmit HTTP <data> in response to a GET or POST request. REPLY can send up to
1,024 bytes– if more is required, REPLY can be followed by one or more SEND
commands to transmit the entire <data> set.

Handle

An active connection handle; returned by POLL.
Rcode

The desired HTTP response code for the reply.
Total_count

The total size of the <data>. If <data> is empty (0 bytes in size), total_count,
count, and <data> may be omitted. For other <data> sizes, see description of
count and <data>.

Count
The number of bytes of <data> (up to 1,024) included with this REPLY
command. Count defaults to total_count and may be omitted if <data> size ≤
1024 bytes. For sizes > 1,024, see description of <data>.

<data>
The data for the HTTP reply must follow the REPLY command. If total_count
= 0 (or is omitted), then count must also be 0 (or omitted) and <data> must
also be omitted; otherwise, at least total_count and <data> must be included.
If <data> is ≤ 1,024 bytes, total_count must be specified, count can be
omitted, and the entire <data> must follow the command. If <data> is >
1,024 bytes, total_count must be specified, count must be up to 1,024, count
bytes of <data> must follow the command, and the remainder of <data>
should be sent via one or more SEND commands.

Returns b = S,0 E on success, or b = E,code E on error; see Error Codes.

Settings
The Parallax Wi-Fi Module’s settings determine default modes and behaviors. Using the settings
commands below, they can be retrieved and adjusted.

b CHECK:setting E

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 19 of 21

Retrieve the current value of a setting. Note: If setting is an I/O pin, such as pin-
gpio2, the CHECK command will set the I/O pin to an input direction and read its
state, leaving it set as an input. Use the SET command to set an I/O pin to an output.

Setting

The desired setting to read. Setting may be any of those described in the
Network Command - Settings - GET command section. For example:
CHECK:module-name retrieves the module’s name.

Returns b = S,value E on success (where value is the current value of the setting), or
returns b = E,code E on error; see Error Codes.

b SET:setting,value E
Change the setting to value. Note: If setting is an I/O pin, such as pin-gpio2, the SET
command will set the I/O pin to an output direction during the process of setting its
state. Use the CHECK command to set an I/O pin to an output.

Setting

The desired setting to change. Setting may be any of those described in the
Network Command - Settings - GET command section. For example:
SET:wifi-mode,STA changes the module’s Wi-Fi interface to station mode.

Value
The value to change the setting to. Each setting has a range of values
described in the Network Command - Settings - GET command section.

Returns b = S,0 E on success, or b = E,code E on error; see Error Codes.

b JOIN:ssid,passphrase E

Attempt to join a network via the ssid access point using passphrase.

Ssid

The desired access point’s SSID name.
Passphrase

The desired access point’s passphrase.

Returns b = S,0 E on success, or b = E,code E on error; see Error Codes.

Tokens
The following single byte tokens can be used in place of text command names and parameters to
decrease serial transmission time and microcontroller application size.

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 20 of 21

Command Name Tokens

 TKN_JOIN = 0xEF
 TKN_CHECK = 0xEE
 TKN_SET = 0xED
 TKN_POLL = 0xEC
 TKN_PATH = 0xEB
 TKN_SEND = 0xEA
 TKN_RECV = 0xE9
 TKN_CLOSE = 0xE8
 TKN_LISTEN = 0xE7
 TKN_ARG = 0xE6
 TKN_REPLY = 0xE5
 TKN_CONNECT = 0xE4

Each of the above tokens can be used in place of the corresponding command name and the
following colon. For example: TKN_JOIN will replace “JOIN:”. Note that you must not follow one
of the tokens with a colon.

Parameter Tokens

 TKN_INT8 = 0xFD
 TKN_UINT8 = 0xFC
 TKN_INT16 = 0xFB
 TKN_UINT16 = 0xFA
 TKN_INT32 = 0xF9
 TKN_UINT32 = 0xF8

The above tokens precede a binary value. The INT8 and UINT8 tokens are followed by a single byte,
the INT16 and UINT16 tokens are followed by two bytes, low byte first. The INT32 and UINT32
tokens are followed by four bytes, low byte first. None of these tokens should be followed by a
comma to separate it from any following parameter.

 TKN_HTTP = 0xF7
 TKN_WS = 0xF6
 TKN_TCP = 0xF5
 TKN_STA = 0xF4
 TKN_AP = 0xF3
 TKN_STA_AP = 0xF2 // inserts “STA+AP”

The above tokens insert strings with the same name. Note that because of symbol name restrictions
the string “STA+AP” must be inserted using the SSCP_TKN_STA_AP token.

Error Codes
1 Invalid request

Copyright © Parallax Inc. Parallax Wi-Fi Module (#32420) Firmware Guide v1.0 - 11/16/2016 Page 21 of 21

2 Invalid argument
3 Wrong argument count
4 No free listener
5 No free connection
6 Lookup failed
7 Connect failed
8 Send failed
9 Invalid state
10 Invalid size
11 Disconnected
12 Unimplemented
13 Busy
14 Internal error

Network Codes
0 No error
-1 Out of memory error
-2 <undefined>
-3 Timeout
-4 Routing problem
-5 Operation in progress
-6 <undefined>
-7 Total number exceeds the set maximum
-8 Connection aborted
-9 Connection reset
-10 Connection closed
-11 Not connected
-12 Illegal argument
-13 <undefined>
-14 UDP send error
-15 Already connected
-16..-27 <undefined>
-28 ssl handshake failed
-29..-60 <undefined>
-61 ssl application invalid

References

Source code is in the Parallax GitHub account: https://github.com/parallaxinc/Parallax-ESP

Based on ESP-HTTPD by Jeroen Domburg and ESP-LINK by Thorsten von Eicken.

https://github.com/parallaxinc/Parallax-ESP

	Parallax Wi-Fi Module Firmware Guide
	(#32420D DIP version, and 32420S SIP version)
	Table of Contents
	Module Interfaces
	Wireless Interfaces
	Serial Interfaces

	Serial Interface Modes
	Setting Command Mode
	Setting Transparent Mode

	Network Commands
	User File System
	Propeller Loader
	WebSockets
	Settings

	Serial Commands
	Serial Command Format
	Serial Stream Example (22 bytes on DI pin)
	Example Serial Command (DI pin)
	Example Serial Response (DO pin)
	Microcontroller Networking

	General
	Connections
	WEB/HTTP
	HTTP
	Settings
	Tokens
	Command Name Tokens
	Parameter Tokens

	Error Codes
	Network Codes

	References

