Process Control

Student Guide

VERSION 1.0

PARALAX 7

WARRANTY

Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt
of product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the
purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)
number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose
the following along with the returned merchandise: your name, telephone number, shipping address, and a description
of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the
product to Parallax.

14-DAY MONEY BACK GUARANTEE

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This
guarantee is void if the product has been altered or damaged. See the Warranty section above for instructions on
returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright 2006 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
Parallax Inc. Duplication for educational use is permitted, subject to the following Conditions of Duplication:
Parallax Inc. grants the user a conditional right to download, duplicate, and distribute this text without Parallax's
permission. This right is based on the following conditions: the text, or any portion thereof, may not be duplicated for
commercial use; it may be duplicated only for educational purposes when used solely in conjunction with Parallax
products, and the user may recover from the student only the cost of duplication.

This text is available in printed format from Parallax Inc. Because we print the text in volume, the consumer price is
often less than typical retail duplication charges.

BASIC Stamp, Stamps in Class, Board of Education, Boe-Bot SumoBot, SX-Key and Toddler are registered
trademarks of Parallax, Inc. If you decide to use registered trademarks of Parallax Inc. on your web page or in
printed material, you must state that "(registered trademark) is a registered trademark of Parallax Inc.” upon the first
appearance of the trademark name in each printed document or web page. HomeWork Board, Propeller, Parallax, and
the Parallax logo are trademarks of Parallax Inc. If you decide to use trademarks of Parallax Inc. on your web page
or in printed material, you must state that "(trademark) is a trademark of Parallax Inc.”, “upon the first appearance of
the trademark name in each printed document or web page. Other brand and product names are trademarks or
registered trademarks of their respective holders.

ISBN 1-928982-36-0

DISCLAIMER OF LIABILITY

Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with
Parallax products. Parallax Inc. is also not responsible for any personal damage, including that to life and health,
resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no matter
how life-threatening it may be.

INTERNET DISCUSSION LISTS

We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible
from www.parallax.com via the Support — Discussion Forums menu. These are the forums that we operate from our
web site:

. BASIC Stamp — This list is widely utilized by engineers, hobbyists and students who share their
BASIC Stamp projects and ask questions.

. Stamps In Class® — Created for educators and students, subscribers discuss the use of the Stamps in
Class educational products in their courses. The list provides an opportunity for both students and
educators to ask questions and get answers.

e Parallax Educators —Exclusively for educators and those who contribute to the development of
Stamps in Class. Parallax created this group to obtain feedback on our educational products and to
provide a forum for educators to develop and obtain Teacher’s Guides and other resources.

. Translators — The purpose of this private list is to provide a conduit between Parallax and those who
translate our documentation to languages other than English. Parallax provides editable Word
documents to our translating partners and attempts to time the translations to coordinate with our
publications. To join, email aalvarez@parallax.com.

e Robotics — Designed for Parallax robots, this forum is intended to be an open dialogue for robotics
enthusiasts. Topics include assembly, source code, expansion, and manual updates. The Boe-Bot®,
Toddler®, SumoBot®, HexCrawler and QuadCrawler robots are discussed here.

. SX Microcontrollers and SX-Key — Discussion of programming the SX microcontroller with
Parallax assembly language SX — Key® tools and 3rd party BASIC and C compilers.

. Javelin Stamp — Discussion of application and design using the Javelin Stamp, a Parallax module
that is programmed using a subset of Sun Microsystems’ Java® programming language.

. ParallaxEFX — For animators, theatre prop builders, and those who create Halloween and other
holiday displays using the ParallaxEFX product line.

. Propeller Chip — Forum for those using the Parallax Propeller™ chip.

ERRATA

While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us
know by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials
and documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and
corrections for a given text will be posted to our web site, www.parallax.com. Please check the individual product
page’s free downloads for an errata file.

Table of Contents - Page i

Table of Contents

=Y - T iii
EdUCAIOr RESOUICES.......ciiiiiiiiiiieiee et e e e iv
The Stamps In Class Educational SEries.........c.uuevieiiiiciiiiiieee e v
Foreign TranSlationscooiiii i Vi
Special CONIIDULOISooiiiie e Vi
Chapter 1: Process Control and Flowchartsccccooiiiiiiiiinnnccceeeeee s 1
What is Process CONTrol?.........coouiiiiiiie ettt seee e e 1
Activity #1: Flowcharts for Representing Processescccccvvveeiiiiciiiieeeee e, 3
Activity #2: Sequential FIow and Code..........ccociiiiiiiiiiiiieciee e 6
Activity #3: Flow and Coding with Conditional Branchesccccccooiiiiiiieieeeninnns 12
Activity #4: Predefined Processes with Subroutines.............cccooviiiiiiiin e 16
Activity #5: Conditional LOOPINGccccoiiiiiiiiiiie et e e ree e 20
L0703 o3 1117) o 1SR 24
Solutions to Chapter 1 Challenges.........ccuuiiiiiiiiiiiie e 25
Chapter 2: PC Based Monitoring and Control...........ccccccmmnniimmninniennesennne, 29
Activity #1: Using StampPlot for Monitoring and Controlcccccoeiiiieiiciee e, 29
Activity #2: StampPlot Interactive Control ... 35
Activity #3: StampPlot Toolbar CONtrolS.........c.ceeviiiiiii i 37
Activity #4: Specialized Interface CONtrolSccccvvieeiieiiiice e 40
L0703 o3 1117) o 1SR 43
Solutions to Chapter 2 Challenges..........oocuiiiiiiiee e 43
Chapter 3: Digital Input Conditioning........ccccecvmmminrimminni s 45
Activity #1: Measuring the Threshold Voltage............ccccooviiiiiiiiiii e 45
Activity #2: Night-Light ProCesscooccuiiiiiiiiiii e 51
Activity #3: Uncommited Inputs and Conditioning Switchesc.ccocoviiiiinieenne. 53
Activity #4: The Transistor as @ SWItChcooviiiiiii e 57
Activity #5: Effects of Resistor Sizing..........ccccoiiiiiiiiiic i 66
Activity #6: Switching Configuration Comparisons...........cccccvvviieree i 70
Activity #7: Typical Industrial SWItChesc.cccoiiiiiiii 73
L0703 o3 11171) o OSSR 78
Solutions to Chapter 3 Challenges..........oociiiiiiiiii i 79
Chapter 4: Sequential Processes and Optical Switches.........cccccccmrriiccccinecnnennn. 83
Activity #1: Connecting and Testing the Opto-Reflective Switchccccccceeeenis 84
Activity #2: Batch or Sequential Process Control............ccoooceeieiiiie i 91
Activity #3: ProdUcCtion LOGSuuiiiiiiiiiiiiiieie e cetiiiee et e e e snnaree e e e e e snnnes 101
Activity #4: Box Conveyor Belt — Counting and Edge Detection............cccccoeennne 104
Activity #5: Input Bounce and Spurious Signals..........cccceiieiiiiiie e 111

Activity #6: Tachometer — High-Speed Countingccccoiiiiiiiiiiiiiiiiiiieee e 114

Page ii - Book Name

Activity #7: Increasing Sensor RESPONSEcccoeiiiiiiiiiiiie e 127
CONCIUSION ...ttt et et e e 130
Solutions to Chapter 4 Challengesooooiiioiiiiie e 130
Chapter 5: High Current Drive and PWM Control............cccccccmnniimninninnninsnnenn 135
Activity #1: DC Fan On-Off CONtrol........cooiiiiiiiiiieeeeieeee e 135
Activity #2: Pulse Width Modulation ... 141
Activity #3: PWM Filtering ...cccoooiiiiiiee e 152
Activity #4: Op-Amp Buffer and Active-Filters...........cccoooiiiiiii, 159
Activity #5: Op-Amp Non-Inverting Amplifier........cccooiiiiiei e, 162
Activity #6: Driving the Fan with the Op-Amp ... 166
Additional Devices of INterest ... 170
L0703 o3[11 o SRR 177
Solutions to Chapter 5 Challengescoccuiiiiiiiiiiiii e 177
Chapter 6: Open Loop Continuous Process Controlcccccceevcccceeceinnnnnicnnns 181
Activity #1: Testing the LM34 ... e 182
Activity #2: Signal ConditionNiNg.........ccouiiiiiiiiiiiiie e 186
Activity #3: Manual Control of Incubatorccooiiiiiii e, 202
Activity #4: Open Loop PWM CoONtrolc.ouveeiiiiiiiiiiieeeee e 211
L0703 o3 [T o SRR 218
Solutions to Chapter 6 Challengesocceiiiiiiiiiiniiee e 219
Chapter 7: Closed Loop Process Control...........cccceviiiiiiciinmmmnninnsscccemsee s 221
Activity #1: On-Off CONIOl ... e 223
Activity #2: Differential Gap Control...........cc.uueiiiiiiiiiiie e 231
L0703 o3 [T o SRR 239
Solutions to Chapter 7 Challengesccooviiiiiiiiiiiie e 240
Chapter 8: Proportional-Integral-Derivative Controlccccoccccemreeeccenrncciecen. 245
ACHVItY #1: BIas DIV ...ooieiiiie ettt 256
Activity #2: Bias and System ReSpONSEccocviiiiiiiiiiiiiii e 274
Activity #3: Proportional Control at Bias Temperatureccccooiiieiiiieeenen. 282
Activity #4: Proportional Control Not at Bias Temperaturecccccoooviiiieeeeennn. 288
Activity #5: Proportional-Integral Controloooooiiiiii e 290
Activity #6: Proportional-Derivative Controlccccvveeiieiiiiiiiiieee e 294
L0703 o3 1117) o SRR 303
Solutions to Chapter 8 Challengescoouiiiiiiiiiiiiiee e 305
Appendix A: CUt-OULS......ooi e 309
Appendix B: Parts Listingcccooiimiiiiiirn s 311

Preface - Page iii

Preface

Industrial process control (PC) is a fascinating and challenging area of electronics
technology and nothing has revolutionized this area like the microcontroller. The
microcontroller has added a level of intelligence to the evaluation of data and a level of
sophistication in the response to process disturbances. In this respect, you may hear that
microcontrollers are embedded as the “brains” in much of our manufacturing equipment
and consumer electronic devices. But in reality, the real “brains” of the system is the
process control technician.

Although embedded process control centers around the microcontroller, it is only one
piece of the total control system. The process control technician must be part control
engineer, electronics technician, and computer programmer. This Process Control text
uses its experiment-based chapters to build a good foundation from which to analyze and
understand the many facets of embedded control technology.

The text builds this foundation through hands-on laboratory circuits and experiments that
reinforce short, relative discussions of control theory. You will experiment with event-
based and time-based sequential control as well as various open-loop and closed-loop
continuous control modes. You will understand the characteristics of these modes of
control and how they lend themselves to different types of control applications.
Converting the control scenario and the mode of control chosen into a program flowchart
is the first major step toward bringing automated intelligence into the system. Clear,
well-commented PBASIC programs demonstrate how the Basic Stamp can be
programmed to provide the control action.

An exciting and powerful software application comes with this text to help you visually
understand the dynamics of a system as well as allow you to develop computer-based
monitoring and control of your Basic Stamp. StampPlot’s multiple-channel graphing
feature is used throughout the text to allow you to monitor and compare input and output
relationships to better understand the dynamics of the control system. You will also see
how virtual controls, such as gauges, pushbuttons, sliders, textboxes, etc. can be used to
build interactive visual interfaces for supervisory control and data acquisition of your
Basic Stamp projects.

The hardware needed in the experiments to simulate the process has been kept to a bare
minimum. While the microcontroller is programmed to be the “brains” of the process, it

Page iv - Book Name

is not the “muscle.” Actual applications require the microcontroller to read and control a
wide variety of input and output (I/O) devices. The experiments include information on
proper I/O signal conditioning. The process control technician must have a good
understanding of the electronics required to get proper input voltages into the
microcontroller from switches, contacts, and sensors as well as understand how to
interface it to high-power output elements through the use of relays and power
semiconductors.

After working with the sample control scenarios in the book, students quickly find
themselves considering the countless automated control applications all around them.
The most exciting aspect of this Process Control text is its ability to give you the tools to
apply control theory, flowchart diagramming, and input/output signal conditioning to
your own real-world applications.

Martin Hebel and Will Devenport
Southern Illinois University Carbondale
Electronic Systems Technologies
http://www.siu.edu/~isat/est

-- and -- SelmaWare Solutions
http://www.selmaware.com

Editor’s Note: Process Control is a newly written text covering similar subject matter to
Industrial Control, which it now replaces in the Stamps In Class educational series.
Process Control is an advanced book, and we strongly recommend that students first
learn the electronics and PBASIC programming concepts introduced in What’s a
Microcontroller? — the gateway to the Stamps in Class series.

EDUCATOR RESOURCES

Process Control has a supplemental set of exercises and solutions in an editable Word
document that are made available only to teachers. These materials and other Stamps in
Class resources can be obtained by joining the free, private Parallax Educators forum.

Both students and teachers are invited to join the public Parallax Stamps in Class forum,
where they can discuss their experiences using Process Control or any other Stamps in
Class text in the classroom. Students are encouraged to come here for assistance with

Preface - Page v

working through the projects in the text, and teachers are encouraged to offer support.
Parallax staff moderate and participate in this forum.

To join the Stamps in Class forum, go to forums.parallax.com. After joining Stamps in
Class, educators may email stampsinclass@parallax.com for instructions to join the
Parallax Educators forum. Proof of status as an educator will be required.

THE STAMPS IN CLASS EDUCATIONAL SERIES

The Stamps In Class series of texts and kits provides affordable resources for electronics
and engineering education. All of the books listed are available for free download from
www.parallax.com. The versions cited below were current at the time of this printing.
Please check our web sites www.parallax.com or www.stampsinclass.com for the latest
revisions; we continually strive to improve our educational program.

Stamps in Class Student Guides:

What’s a Microcontroller? is the recommended entry level text to the Stamps In Class
educational series. Some students instead start with Robotics with the Boe-Bot, also
designed for beginners.

“What’s a Microcontroller?”, Student Guide, Version 2.2, Parallax Inc., 2004
“Robotics with the Boe-Bot”, Student Guide, Version 2.2, Parallax Inc., 2004

You may continue on with other Educational Project topics, or you may wish to explore
our other Robotics Kits.

Educational Project Kits:

The following texts and kits provides a variety of activities that are useful to hobbyists,
inventors and product designers interested in trying a wide range of projects.

“Process Control”, Student Guide, Version 2.0, Parallax Inc., 2006

“Applied Sensors”, Student Guide, Version 1.3, Parallax Inc., 2003

“Basic Analog and Digital”, Student Guide, Version 1.3, Parallax Inc., 2004
“FElements of Digital Logic”, Student Guide, Version 1.0, Parallax Inc., 2003
“Experiments with Renewable Energy”, Student Guide, Version 1.0, Parallax
Inc., 2004

“Understanding Signals”, Student Guide, Version 1.0, Parallax Inc., 2003

Page vi - Book Name

Robotics Kits:

To gain experience with robotics, consider continuing with the following Stamps in Class
student guides, each of which has a corresponding robot kit:

“IR Remote for the Boe-Bor’, Student Guide, Version 1.0, Parallax Inc.,
2004

“Applied Robotics with the SumoBo?’, Student Guide, Version 1.0, Parallax
Inc., 2005

“Advanced Robotics: with the Toddler”, Student Guide, Version 1.2, Parallax
Inc., 2003

Reference

This book is an essential reference for all Stamps in Class Student Guides. It is packed
with information on the BASIC Stamp series of microcontroller modules, our BASIC
Stamp Editor, and our PBASIC programming languages.

“BASIC Stamp Manual”, Version 2.2, Parallax Inc., 2005

FOREIGN TRANSLATIONS

Parallax educational texts may be translated to other languages with our permission (e-
mail stampsinclass@parallax.com). If you plan on doing any translations please contact
us so we can provide the correctly-formatted MS Word documents, images, etc. We also
maintain a private discussion group for Parallax translators which you may join. This
will ensure that you are kept current on our frequent text revisions.

SPECIAL CONTRIBUTORS

The authors would also like to thank the 2004 and 2005 EST 212 classes at Southern
Illinois University Carbondale for testing much of the text during its development. Also,
thanks to Barry Shahian and Clark Radcliffe for their feedback and suggestions.

Parallax Inc. would like to recognize their Education Team members: Project Manager
Aristides Alvarez, Technical Illustrator Rich Allred, Graphic Designer Jen Jacobs, and
Technical Editor Stephanie Lindsay. Special thanks also go to Andrew Lindsay, Chris
Savage, and Kris Magri for their insightful consulting and review, and, as always, to Ken
Gracey, the founder of Parallax Inc.’s Stamps in Class educational program.

Chapter 1: Process Control and Flowcharts - Page 1

Chapter 1: Process Control and Flowcharts

BEFORE YOU START

To perform the experiments in this text, you will need to have your Board of Education
connected to your computer, the BASIC Stamp Editor software installed, and to have
verified the communication between your computer and your BASIC Stamp. For
detailed instructions, see What's a Microcontroller? - a free download from
www.parallax.com. You will also need the parts contained in the Process Control Parts
Kit. For a full listing of system, software, and hardware requirements, see Appendix B.

WHAT IS PROCESS CONTROL?

Process control refers to the control of one or more system parameters, such as
temperature, flow rate or position. While most systems are a continual process, such as
maintaining a temperature, other processes may be a sequence of actions, for example,
the assembly of a product.

Control systems can be very simple or very complex. Figure 1-1 is a block diagram of a
simple continuous control system. For control of the process, an input (such as a setpoint
control or switch) is required into the controller. Based on the input, the controller will
drive an actuator to cause the desired effect on the process.

Examples of actuators are heaters for temperature, pumps for flow, and servos for
positioning.

Process
Figure 1-1
Simple Process
Controller > Controller > Actuator Control Block

Input Diagram

Consider the example of a common car heating system. The driver adjusts a temperature
control to change the heat output of the vents. If the driver becomes too warm when
weather conditions change, the temperature control must be adjusted to return to a
comfortable temperature. This is a very simple system in that most automobiles do not
monitor the cabin with temperature sensors to automatically control the heat output of the
vents.

Page 2 - Process Control

A more sophisticated system would have a sensor to monitor temperature and provide
feedback to the controller. The controller would automatically adjust the actuator to
regulate the controlled parameter - temperature. The controller would drive the heating
system to maintain the temperature near the defined set point. An example of this is your
home heating system.

Consider the difference between how the cabin temperature of the automobile is
controlled versus the temperature in a home. In the automobile, the heat output is
variable but has no sensors that directly affect the heat output and maintain temperature.
In home heating a sensor is used to monitor the temperature, but the output of the heating
system is not variable; it is either on or off and cycles to maintain temperature in a
comfortable band. The controller itself may be very simple, such as a metallic coil that
expands and contracts, or more complex, such as a microcontroller similar to the BASIC
Stamp.

These are two very unique means of controlling a process. First, the types of drive
employed may be variable or on/off. Second, whether feedback from the system may or
may not be used in the control of the system.

INPUT, DRIVE AND MONITORING

Just as important as the type of control employed are the methods used for the input into
the controller. Will the inputs provide a simple on/off input to the controller? If using an
analog (variable level) input instead of a digital one (only two levels), how can it be
conditioned for on/off input if needed? If analog input is required, what are methods to
bring this data into the BASIC Stamp? How is the data represented in the BASIC Stamp
and how can it be converted to meaningful information?

In terms of the drive of a system, there are several questions as well. Do we need to
employ on/off control of the actuator, such as turning a heater or pump on or off? Does
the process require variable control of the drive such as regulating heat or flow output
between on or off? Does the process actuator require higher current or voltage than is
provided by the BASIC Stamp? How can the BASIC Stamp outputs be used to control
these actuators?

In industry, monitoring of systems is often required in order to ensure proper control
action and to determine response in order to adjust this control action. Another
monitoring aspect is data logging, or being able to collect real time data from the system
for analysis.

Chapter 1: Process Control and Flowcharts - Page 3

This text explores these areas of process control through simple circuits using the BASIC
Stamp microcontroller, and illustrates use with much larger systems.

ACTIVITY #1: FLOWCHARTS FOR REPRESENTING PROCESSES

When you hear the word ‘flowchart’, it may bring to mind programming, but a flowchart
is often used for more than programming. A flowchart is a graphical representation of
steps and decisions used to arrive at a logical outcome. It can be used to arrive at
management decisions, system troubleshooting decisions, and other processes that
involve well-defined steps and outcomes. Table 1-1 shows the most popular symbols
used in flowcharting. These blocks, connected with flow lines, are used to describe the
actions and flow of the program.

Table 1-1: Flowcharting Symbols

@ Start/Stop: Indicates the beginning or end of a program or routine.

Process: Indicates an internal process, such as calculations or
delays.

Input/Output: Indicates an input from an external source or output
to an external source.

Decision: Indicates a decision to continue flow in one of two
directions based on a condition.

Predefined Process: Indicates a predefined process, such as a
subroutine, to be performed.

Matching connectors indicate a connection between two locations
in the flowchart.

Flow lines: Indicates direction of flow between symbols.

710

Page 4 - Process Control

While flowcharting has fallen out of fashion in many programming circles due to the
advent of object-oriented programming (PBASIC used by the BASIC Stamp is
procedural language), it is still an excellent tool when planning program flow.
Flowcharting is particularly useful in process control because it can be used to visually
represent the steps and decisions required to perform control of the system.

Take the everyday task of preparing the temperature of the shower before stepping into it.
In pseudocode, or English statements outlining the steps to take, this is how we would
proceed:

Turn on cold water.
Turn on hot water.
Wait 3 seconds for temperature to stabilize.
Test water temperature.
If too hot, then:
a. Turn hot water down.
b. Go back to step 3.
6. Iftoo cold, then:
a. Turn hot water up.
b. Go back to step 3.
7. Ifjust right then get in shower.

Nhwh =

While it’s not too difficult to read through these steps to see what actions should be
taken, as a program or procedure becomes more complex it becomes more difficult to
visualize the flow of the process and what actions and branches are needed. For example,
how much more complex would the flow be if the hot water valve becomes fully open
before the optimum temperature is reached?

As complexity increases, a flowchart makes it easier to visualize how the process will
flow. Take a look at the flowchart in Figure 1-2, which describes the same process as the
pseudocode above.

Chapter 1: Process Control and Flowcharts - Page 5 n

Figure 1-2 Adjusting Shower Temperature Flowchart

Turn Down
Hot
Turn On
Cold
t Turn Up /L@
Turn On Hot
Hot

QD_> Wait
3 Seconds

— | &

Get

Temperature

Note how each of the symbols is used.

e Typically, an input/output symbol is used when bringing data or information into
the controller (in this case the person adjusting the temperature by sensing and
adjusting the water actuators).

e The processing symbol is used when the controller is performing internal
processing of data or a task, such as waiting or calculations.

e Finally, decision blocks are used to guide the flow of the procedure in one
direction or another based on the decision results.

A decision can take one of two forms:

e Questions resulting in Yes or No.
e Statements resulting in True or False.

Page 6 - Process Control

As humans, we typically work with questions resulting in yes/no. In flowcharting, it is
better to use statements that result in true/false due to the logical nature of programming
where conditions are checked to be true or false. Take the following example for the
shower process:

o Is the water too hot? YES — Turn down the hot.
e The water is too hot. TRUE — Turn down the hot.

In programming, a typical condition may be:
IF (Water_ Temp > 95) THEN ..

In this example, when the condition is checked, the equality will either be true or false.
Using true/false statements makes the transition from the flowchart to the programming
language easier.

Challenge 1-1: Modify the Flowchart for True/False

v Modify the flowchart in Figure 1-2 to use true/false statements instead of yes/no
questions.

ACTIVITY #2: SEQUENTIAL FLOW AND CODE

"Sequential flow" means moving from one operation to the next with no branches being
made. In this activity a simple circuit will be used to illustrate principles of sequential
flow and how the PBASIC language is used in programming the BASIC Stamp.

Parts Required

(3) Resistors — 220 Q

(1) Resistor — 1 kQ

(1) Photoresistor

(1) Pushbutton — Normally Open
(1) LED — Red

(1) Piezospeaker

(1) Capacitor — 0.1 uF

Chapter 1: Process Control and Flowcharts - Page 7 n

v Construct the photoresistor, LED, piezospeaker, and pushbutton circuits shown

in Figure 1-3.

Figure 1-3 Test Circuit Schematics

PO CO—AM—t
1

220 Q
I 0.1 uF
V_ss V_ss
P5
220 Q
N
Vgs

L
o 1
220 Q L
Vgs

f/‘:"\‘ For an introduction to building basic circuits with these components, please see
[1 | What’sa Microcontroller?, the recommended starting point for the Stamps in Class series. It
is available for free download or purchase from www.parallax.com.

Figure 1-4 is a flowchart to have the circuit continuously perform a sequence of
operations. Without knowing any programming, can you determine what should occur

when the program is entered and run?

Page 8 - Process Control

Photo Resistor
Declarations
and Display
Inltlallzatlon Photo Resistor
Figure 1-4
Read Sound Buzser Slmple.SequentlaI
®_¢ Pushbutton / Based on Photo Operation Flowchart
Re3|stor Value
Display
Pushbutton Value 1/4 Second Delay
Set LED to
Pushbutton Value

/ & % AVOID TYPOS! All of the BASIC Stamp (.bs2) programs listed in this text are available
\&/ for free download from the Process Control product page at www.parallax.com.

Example Program: SimpleSequentialProgram.bs2

v Enter and run SimpleSequentialProgram.bs2.

L [Title J------mmmmmmm o m i m oo oo oo o
Process Control - SimpleSequentialProgram.bs2

Tests and illustrates sequential flow using a simple test circuit.
{$sTAamMP BsS2}

{$PBASIC 2.5}

I ===== [Deegleratleng |==
Photo PIN O Alias for photo resistor circuit on PO
LED PIN 5 Alias for LED on P5

PB PIN 13 Alias for pushbutton on P13
PBVal VAR Bit Bit variable to hold pushbutton value

1
1
Buzzer PIN 10 ' Alias for buzzer on P10
1
1
PhotovVal VAR Word ' Word variable to hold RC Time value

Chapter 1: Process Control and Flowcharts - Page 9

BuzzerDur CON 250 ' Constant for duration of tone for buzzer

Y [Initialization J-------com oo oo oo
OUTPUT LED ' Set LED pin to be an output

OUTPUT Buzzer ' Set Buzzer pin to be an output

————— [Main Routine J-------------"--"-—-"-—- - -
! **%*x*** Read Pushbutton
PBVal = PB ' Read Pushbutton value and assign to PBVal
' Display Pushbutton value
' *kx*kxkx*xxx Digplay pushbutton value

DEBUG CLS, "Pushbutton Value = ", DEC PBVal,CR

' k*kkxkxkx* Set LED to pushbutton value
LED = PBVal ' Set LED based on Pushbutton value

' *%x%x%x%x%%* Measure Photoresistor

HIGH Photo ' Charge photoresistor's RC network Capacitor
PAUSE 10 ' Allow 10 milliseconds to charge fully
RCTIME Photo, 1, Photoval ' Measure discharge time through photoresistor

' *x*xx*x*xx Digplay photoresistor value
DEBUG "Photo RC Time Value = ", DEC PhotoVal, CR

' xxxxxxxx Sound buzzer at set duration at frequency of Photoval
FREQOUT Buzzer,BuzzerDur, PhotoVal

! k*x%xkx%x*%] /4 geconds delay

PAUSE 250 ' 1/4 second pause
LOOP ' Loop back to DO to repeat continuously

v Test the circuit by pressing the pushbutton and varying the light falling on the
photoresistor.

o When the button is pressed does the state of the pushbutton change from
1 to 0 in the Debug Terminal?

o When the button is pressed does the LED change from on to off?

o When the sensor is darkened does the photoresistor RC time value
change in the Debug Terminal?

o Does the frequency output of the buzzer change in relation to the
photoresistor's RC time value? Note that the buzzer has a very limited
frequency response range.

v If your circuit does not operate properly, verify your circuit connections and
code.

Page 10 - Process Control

Code Discussion

As you read through the program, you can see that the coding that corresponds to the

various elements of the flowchart are well highlighted using comments.

The pushbutton switch is active-low, meaning that its value is 0 when pressed. This is
because the pushbutton is pulled up to Vdd when not pressed and brought to Vss when
pressed. (This will be explored more in Chapter 3.)

Note that the flowchart block for 'Measure Photo Resistor' takes 3 lines of code.

The

flowchart just describes the process and is not intended to be a line-by-line description.
This flowchart could be used for coding or designing any number of devices in any

number of languages.

Looking it Up: The PBASIC commands and programming techniques used here were
introduced in What’s a Microcontroller?, the recommended prerequisite to Process Control.
If you would like a refresher about specific program elements, you can look it up quickly in
the BASIC Stamp Editor's Help file. Or, refer to the BASIC Stamp Syntax and Reference
Manual, available for purchase or free download from www.parallax.com.

E? PBASIC Syntax Guide

=lolx|

2 Note: For BS1/BS2-compatible commands, syntax shown below is in BS2 format. Some commands may use slightly

AUXID

BRANCH Offset, jAcbressi, Adbress, .. Addessh]

BUTTON P1, DownStsts, Delsy, Rate, Workspace, Targetststs, Asress
COUNT Pir, Duration, Varfabis

{Synmbol} DATA Dataftom {, Dataltern, ..}

DEBUG OupputData {, Ouiputatat

DEBUGIN JnputData

DO {WHILE | UNTIL Congitiora(s)} ... LOOP {UNTIL | WHILE Concitints)}
DTMFOUT Fin, {GnTime, OfFTime, } [Tored, Fore, ..}]

EEPROM {Locstion} (Datsitent{, Dstalterm, ...})

END

EXIT

FOR Courter = StartViabe T0 Endvalue {STEP StapVabst ... NEXT

FREQOUT Pin, Duration, Fregl {, Fregl}

& 2ig
Hide Back Pini DOpfions
Emi::ﬁ'ﬂ'j:ex e PBASIC Command Reference
R PBASIC Reference x ? & ? .’{’., *
different formatting with the BS1,
25 Note: Reuires {$PBASIC 2.5} directive
* Note: Compound, multi-line command; syntax nat shawn,
 BUXIO i |
+ BRANCH 2 izZEE.E
+ BUTTON IZER 1N
~ COUNT EER_E
+ DATA Znmlm
« DEBUG izZEEm
- DEBUGIN 25 ZEERN
+DO..LOOP 25 ZEERR
« DTMFOUT ERELE
« EEPROM g
+ END iZEEN
< EXIT 25 Zpnm
« FOR.. NEXT iZRELR
| + FREQOUT ZER N
.

{ o

Figure 1-5
BASIC Stamp
Editor's Help
Files

The PBASIC
Syntax Guide
places
information and
examples for all
commands at
your fingertips.

Chapter 1: Process Control and Flowcharts - Page 11 n

Challenge 1-2: Coding from a Flowchart

Figure 1-6 is a flowchart for a different sequence of operations, using the same circuit.
Code a program to match this sequence of events. Hints for coding are provided in the

flow symbols.

Declarations
and
Initialization

Turn On LED
(High)

1/2 Second Delay Figure 1-6
(Pause) Challenge 1-2
Flowchart

Sound Buzzer at
2000 Hz for 1 Sec.
(Freqout)

Turn Off LED
(Low)

2 Second Delay
(Pause)

|

Page 12 - Process Control

ACTIVITY #3: FLOW AND CODING WITH CONDITIONAL BRANCHES

In most processes, measurements are made and decisions are then based on those
measurements (such as, in the shower example, whether to turn up or down the hot water

based on the current temperature). In the BASIC Stamp, there are multiple ways to code
decisions and conditional branches.

Parts Required

Same as Activity #2

Consider the flowchart in Figure 1-7. What should occur when the button is pressed, and
when it is not pressed?

Declarations
and
Initialization

v

Read
Pushbutton

v

Figure 1-7
/ Display / Conditional LED Blink

\ 4

Pushbutton Value Flowchart

Button
Pressed

Blink LED For
False 1/2 Second

1/4 Second Delay ¢ |

(Pause)

Chapter 1: Process Control and Flowcharts - Page 13

If you said the LED would blink on for %2 second when the button is pressed, and not at
all when not pressed, you would be correct.

Example Program: ConditionalLEDBIlink.bs2

v Enter, save and run Conditional LEDBlink.bs2.

' Process Control - ConditionalLEDBlink.bs2
' Blinks the LED based on state of Pushbutton

' {$sTAMP BS2}
' {$PBASIC 2.5}

L [Declarations
Photo PIN 10

LED PIN 5
Buzzer PIN 10

PB PIN 13
PBVal VAR Bit

PhotovVal VAR Word
BuzzerDur CON 250

[[Main Routine

Alias

for

----- [BElE Jossssccsccscossacssasssscsasasssanesasasssaseassaasamoaasos

photo resistor circuit on PO

LED on P5
buzzer on P10
pushbutton on P13

Bit variable to hold pushbutton value
Word variable to hold RC Time value
Constant for duration of tone for buzzer

' *k**kx***x* Read Pushbutton
Read Pushbutton Value and assign to PBVal

PBVal = PB

1

! **xxxxx**x Digplay Pushbutton value

DEBUG CLS, "Pushbutton value

n
1

DEC PBVal, CR

' *k**kkk*kxk*x Button Pressed Conditional and Code
If pushbutton pressed is true then,
blink the LED

IF (PBVal = 0) THEN

HIGH LED

PAUSE 500

LOW LED
ENDIF

1

1

! **xkxxx%x*]/4 second pause

PAUSE 250
LOOP

Code Discussion

The IF..THEN..ENDIF block is used to test the condition.

1

Loop back to DO to repeat continuously

Based on the result, the

program will execute the code within the block if true or skip over it if false.

Page 14 - Process Control

IF (PBVal = 0) THEN ' If condition is true then,
HIGH LED ' blink the LED
PAUSE 500
LOW LED

ENDIF

! k*x%xkx%x% 1/4 gecond pause

PAUSE 250

When the button is not pressed, the conditional test of PBval=0 will result in false
because the value of PBval is 1. Execution will branch to after the ENDIF, executing the
PAUSE 250.

When the button is pressed, pBval will in fact equal 0; PBval=0 will be true, the code
within the block will be executed, and the LED will blink.

/ & % Code Formatting Tip: While indents in lines are not required, they do help to visually
\b represent code that is common to sections.

Challenge 1-3: Code for True and False Conditions

Many times, different code must be executed depending on whether a condition is true or
false. The IF..THEN..ELSE...ENDIF structure can be used to perform this task. If the
condition is false, the code in the ELSE section will be executed.

IF (condition) THEN
Code to run if true
ELSE
Code to run if false
ENDIF

v Figure 1-8 is a flowchart that requires different code depending on whether the
button is pressed or not. Modify ConditionalLEDBIlink.bs2 to match the
flowchart's operation.

Chapter 1: Process Control and Flowcharts - Page 15

Declarations
and
Initialization

v
@_, Read

Pushbutton
v

Display
Pushbutton Value

Button
Pressed

False True

Sound Speaker
Blink LED at 2000 Hz
for 1 Second

| > 1/2 Second Delay ¢ I

(Pause)

Figure 1-8
Conditional LED
Blink or Tone
Flowchart

Page 16 - Process Control

ACTIVITY #4: PREDEFINED PROCESSES WITH SUBROUTINES

Parts Required
Same as Activity #2

As more operations are added to the flowchart, it can become quite large and complex.
The same holds true for programs. In the previous programs, all operations were
performed within the main routine, and the same held true in the flowchart.

As the process increases in size and complexity, it is best to break it down into more
manageable pieces. By looking at the main loop of the flowchart or the main routine of
the code, it is easy to see the overall operation of the program without being
overwhelmed by the amount of code. Finally, analyzing or troubleshooting is much
easier if it can be performed without having to flip between several pages or continually
scroll up or down to different sections of the program. For example, consider the
flowchart in Figure 1-9.

Looking at the main loop, it is easy to see the overall operation of the process. The pre-
defined processes take the place of specialized code to perform these operations. Each
pre-defined process has its own flowchart to define its operation. How will the process
operate based on this flowchart? What occurs if the light level is low?

Chapter 1: Process Control and Flowcharts - Page 17

Figure 1-9 Light Alarms using Predefined Processes Flowchart

Declarations
and
Initialization

v

Read
Photo Resistor

v

Check Light
High

v

Check Light
Low

v

1/2 Second Delay
(Pause)

Check
Light High

Light
Too Bright

False Display
Warning
Sound
High Tone

100 ms Pause

\ 4

Read
Photo Resistor

Check
Light Low

Light
Too Low

Read
Light Level

Display
Warning
Sound
Low Tone

200 ms Pause

Display
Light Level

Page 18 - Process Control

Example Program: LightAlarmsWithSubroutines.bs2

v Enter and run LightAlarmWithSubroutines.bs2.

I ===== [TMiligl@ |===
' Process Control - LightAlarmWithSubroutines.bs2

' Sounds alarm based on photoresistor readings

' {$sTAMP BS2}

' {$PBASIC 2.5}

e [Declarations J----------cccooocom oo oo em oo
Photo PIN O ' Alias for photo resistor circuit on PO

LED PIN 5 ' Alias for LED on P5

Buzzer PIN 10 ' Alias for buzzer on P10

Photoval VAR Word ' Variable to hold RC Time value

PhotoMin VAR Word ' Holds minimum light level value

PhotoMax VAR Word ' Hold maximum light level value

' ---[Initialization] ---------------m oo
PhotoMin = 500 ' Set minimum light wvalue

PhotoMax = 5000 ' Set maximum light wvalue

PAUSE 1000 ' Allow connection to stabilize -- for Chapter 2

L [Main Routine J------co-mmmmmmm oo e e -
DO

GOSUB ReadPhoto

GOSUB CheckLightHigh

GOSUB CheckLightLow

PAUSE 500
LOOP

77777 [Sulseutingg |===

ReadPhoto: ' Read light level and plot values

HIGH Photo

PAUSE 10

RCTIME Photo, 1, PhotoVal

DEBUG DEC Photoval, ",", DEC PhotoMin, "," ,DEC PhotoMax,CR
RETURN

CheckLightHigh: ' Test 1f high light level
IF (PhotoVal < PhotoMin) THEN
DEBUG "LIGHT LEVEL HIGH!",CR
FREQOUT Buzzer,100,3000
PAUSE 100
ENDIF
RETURN

CheckLightLow: ' Test 1f low light level
IF (PhotoVal > PhotoMax) THEN
DEBUG "LIGHT LEVEL LOW!",CR

Chapter 1: Process Control and Flowcharts - Page 19

FREQOUT Buzzer,200,1000
PAUSE 200
ENDIF
RETURN

v Move your hand over the photoresistor, and watch the Debug Terminal. What
occurs as the light level RC time is
o Less than 500?
o Between 500 and 50007
o Greater than 5000?

Your Debug Terminal should look similar to Figure 1-10. It displays the current level
and the low- and high-level set points.

“#Debug Terminal #1 =10l x|

E_om. Part: B.au_d Fate: Parity: [ata Bits: F|-Dl'\; Coritral: @ T% [DIE [RIS
coMt & fesoo 7]l [uere S0 Je S Jor = @ FX @ DSR @ CTS

Figure 1-10
Debug
Terminal
Light Level
Alarms

Capture. | Macros...l Pauze | Clear | Cloze | [~ Echo Off

~7™. Values or tolerances of the photoresistor and capacitor may vary along with ambient
[1 /) light level where you are. Adjust the high and low level setpoints accordingly in the
@ initialization section of your code.

Code Discussion

Using cosus..RETURN Works well with our flowchart structure. The subroutines are the pre-
defined processes. When the cosug call is run, program execution branches to the named
routine. The routine code is executed. When complete, RETurRN causes execution to
branch back to the code after the cosus call.

Page 20 - Process Control

~. Programming Tip: Every routine called with a GOSUB must exit with a RETURN. Internal
(1) pointers keep track of GOSUBs and RETURNs, and if not matched properly, will result in
erroneous behavior of the processor.

Challenge 1-4: Add an Operational Indicator

1. Add a pre-defined process block to the main loop of the flowchart in Figure 1-9.

2. Also add a process flowchart to turn on the LED for 0.25 seconds at every pass
through the main loop in order to indicate proper operation of the system.

3. Add code to LightAlarmWithSubroutines.bs2 to match the flowchart.

ACTIVITY #5: CONDITIONAL LOOPING

Many times in a process it is necessary to repeat a sequence based on a condition. On
the other hand, halting or pausing an execution until a certain condition exists may be
required. Consider the process of starting a piece of industrial machinery. Until
conditions are met, such as an oil pump running, there may be no need to continue farther
into the process. A conditional loop could be used to ensure that a condition exists prior
to continuing with the sequence.

Parts Required

Same as Activity #2

Examine the Conditional Looping flowchart in Figure 1-11.

Figure 1-11 Conditional Looping Flowchart

Declarations
and
Initialization

v

Chapter 1: Process Control and Flowcharts - Page 21

Wait For
Button
Display Message
To Press Button
—

A\ 4

Wait For
Button

v

Get
Frequency

True
3 Button Not

Pressed

Return

Request
Number of
Times (1-10)

Accept
Count

Count Not
in Range

True

False

Get
Frequency

Request
Frequency
(1-4000)

Accept
Frequency

Sound
Tone

Times Sounded
=1

Play
Frequency

Times Sounded =
Times Sounded +1

True

Times
Sounded < =
Count

False

Page 22 - Process Control

Example Program: ConditionalLooping.bs2

v Enter, save and run ConditionalLooping.bs2.

v To begin, press the pushbutton as directed by the Debug Terminal.

v Enter a frequency to play and the number of times to play it by typing a value
into the white text box at the top of the Debug Terminal, and then pressing
Return or Enter.

v Test using valid and invalid values.

R s [Title J-----mmmmmmmmmm oo oo oo oo -
' Process Control - ConditionalLooping.bs2

' Sounds tone using conditional loops

' {$sTAMP BS2}

' {$PBASIC 2.5}

L [Declarations J------------c--mmmmm -
Photo PIN O ' Alias for photo resistor circuit on PO

LED PIN 5 ' Alias for LED on P5

Buzzer PIN 10 ' Alias for buzzer on P10

PB PIN 13 ' Alias for pushbutton on P13

PBVal VAR Bit ' Bit variable to hold pushbutton value

Photoval VAR Word ' Variable to hold RC Time value

FregVal VAR Word ' Frequency to sound

CountVal VAR Byte ' Number of tones to sound

X VAR Byte ' General Counting variable

77777 [Weilm REUWELAE | ==

GOSUB WaitForButton
GOSUB GetFreq

GOSUB GetCount
GOSUB SoundTone

PAUSE 1000
LOOP
L [Subroutines]----------------“- -
WaitForButton:
DEBUG CLS, "Press the pushbutton to begin",CR
DO
LOOP WHILE (PB=1)
RETURN
GetFreq:
DO

DEBUG CR, "Enter the frequency to play (1 to 4000)",CR
DEBUGIN DEC FregVal
LOOP UNTIL (FregVal <= 4000) ' loop until within range
RETURN

Chapter 1: Process Control and Flowcharts - Page 23

GetCount:
DO
DEBUG CR, "Enter the number of times to play (1 to 10)",CR
DEBUGIN DEC CountVal

LOOP WHILE (CountVal > 10) ' loop while out of range
RETURN
SoundTone:
FOR X = 1 TO CountVal ' Start X at 1 for counting up to CountVal
FREQOUT Buzzer,500,FregVal
DEBUG "Buzzing ", DEC X,CR
NEXT ' Add 1 to X and loop if X <= CountVal
RETURN

Program Discussion

The ConditionalLooping.bs2 program uses conditional loops in a variety of ways. The
DO...LOOP WHILE within the waitForButton routine will repeat while the condition is
true. This occurs while the value of the pushbutton input is 1 or not pressed. Once the
pushbutton is pressed, the condition will be false and the loop will end.

In the cetFreq routine, the Do...LOOP UNTIL will repeat until a value within range has
been entered. DEBUGIN accepts data from the Debug Terminal and stores it as a decimal
in the Fregval.

In GetCount, a DO. ..LOOP WHILE is used to request the number of times to play the tone
and will repeat while the value is outside the appropriate range.

In soundTone, a FOR. . .NEXT loop is used. This is a special conditional loop used for
repeating a sequence a set number of times:

FOR variable = Start_Value TO End _Value

The loop begins with the defined value set to the start Value. The code within the
loop is performed. When NEXT is encountered, the variable is incremented and checked
against the End value. If the variable is not greater than the End value, the loop
repeats. x is started at 1 and the loop continues until x exceeds the value entered by the
user for Countval.

Compare the flowcharts to the code for each routine. The use of either WHILE or UNTIL is
at the programmer's discretion as long as it performs the task intended.

Page 24 - Process Control

Challenge 1-5

v Save ConditionalLooping.bs2 under a new name, then add variables and code
required to allow the user to enter the duration the tone should be played (entered
in milliseconds). Limit the maximum allowable duration to 1000 milliseconds.

CONCLUSION

Process control refers to the control of one or more system parameters. Typically, some
form of input is used to adjust this process. A simple process, such as controlling
temperature, may be performed in multiple ways. The control and complexity of the
system is based on need. For process control the BASIC Stamp is ideally suited for many
systems.

Flowcharts are a visual representation of a program or a process. The flowchart
represents the necessary steps to perform the desired actions. Through the use of
symbols the actions of the program or process are graphically depicted. With knowledge
of PBASIC, the programming language of the BASIC Stamp, the process represented by
the flowchart may be programmed into the BASIC Stamp.

Means to control output devices include using the HIGH and Low commands; FREQOUT is
used to sound tones; data may be sent to the computer using the DEBUG instruction.
Conditions may be checked and simple true/false decisions may be made using the
IF...THEN instructions. Looping is performed using the po. . .Loop, and adding WHILE
or UNTIL looping may be performed conditionally. Programs may be broken down into
smaller processes that are called with the cosuB command and exited with the RETURN
command.

Chapter 1: Process Control and Flowcharts - Page 25 n

SOLUTIONS TO CHAPTER 1 CHALLENGES

Challenge 1-1 Solution

Figure 1-12 Shower Temperature Flowchart with True/False

[
[

Turn On
Cold

v

Turn On
Hot

Turn Down
Hot

Turn Up
Hot

®
O

v

Wait
3 Seconds

Get

Ony

v

Check

/
—

Temperature

[

In

Note that the yes-no questions became true-false statements.

Challenge 1-2 Solution
Your program might look like this:

Il ===== [Title]

Code from flowchart
{$sTAMP BS2}
{$pBASIC 2.5}

L [Declarations]------------------~-~-—--
Photo PIN O ' Alias for
LED PIN 5 ' Alias for
Buzzer PIN 10 ' Alias for

Process Control - SimpleFlowchartChallenge.

photoresistor circuit on PO
LED on P5
buzzer on P10

Page 26 - Process Control

e [Main Routine J----------comoommmm oo oo oo m oo -

DO
HIGH LED ' Turn ON LED
PAUSE 500 ' 1/2 second delay
FREQOUT Buzzer, 1000, 2000 ' Sound buzzer at 2000Hz for 1 second
LOW LED ' Turn OFF LED
PAUSE 500 ' 1/2 second delay
LOOP ' Loop back to DO to repeat continuously

Challenge 1-3 Solution

L s [Title J---mmmmmmmm oo oo oo oo oo
' Process Control - ConditionalLEDBlinkChallenge.bs2

' Modify ConditionalLEDBlink for If-Else

' {$sTAMP BS2}

' {$PBASIC 2.5}

L [Declarations J------------c--mmmmm -
Photo PIN O ' Alias for photo resistor circuit on PO

LED PIN 5 ' Alias for LED on P5

Buzzer PIN 10 ' Alias for buzzer on P10

PB PIN 13 ' Alias for pushbutton on P13

PBVal VAR Bit ' Bit variable to hold pushbutton value

Photoval VAR Word ' Word variable to hold RC Time value

BuzzerDur CON 250 ' Constant for duration of tone for buzzer

L [Initialization J-------------“--“- -

L [Main Routine J---------------"---—- - -

DO
' *k**kkk*k*k*x Read Pushbutton
PBVal = PB ' Read Pushbutton Value and assign to PBVal
' *kx*xx*xxx Digplay Pushbutton value
DEBUG CLS, "Pushbutton value = ", DEC PBVal,CR
! **xxxxxx*x Button Pressed Conditional and Code
IF (PBVal = 0) THEN ' If pushbutton pressed is true then,
FREQOUT Buzzer, 1000,2000 ' True - Sound buzzer
ELSE
HIGH LED ' False - Blink the LED
PAUSE 500
LOW LED
ENDIF
! k*x%xkx%x%] /4 gsecond pause
PAUSE 250

LOOP ' Loop back to DO to repeat continuously

Chapter 1: Process Control and Flowcharts - Page 27

Challenge 1-4 Solution

1. To the main flowchart’s loop, add another predefined

process: Indicator

2. Make a flowchart for the predefined process (names _
should match):

Blink LED
0.25s

3. To the programs Main Routine Do...LooP add a

subroutine call for your predefined process:

GOSUB Indicator

Under the Subroutines section, add the subroutine for the predefined process:

Indicator:
HIGH LED
PAUSE 250
LOW LED

RETURN

Challenge 1-5 Solution

L s [Title J--ommmmmm oo m oo oo oo
' Process Control - ConditionalLoopingChallenge.bs2

' Sounds tone using conditional loops

' {$sTAMP BS2}

' {$PBASIC 2.5}

L [Declarations J------c--mmmmm oo oo
Photo PIN O ' Alias for photo resistor circuit on PO

LED PIN 5 ' Alias for LED on P5

Buzzer PIN 10 ' Alias for buzzer on P10

PB PIN 13 ' Alias for pushbutton on P13

PBVal VAR Bit ' Bit variable to hold pushbutton value

Photoval VAR Word ' Variabe to hold RC Time value

FregVal VAR Word ' Frequency to sound

CountVal VAR Byte ' Number of tones to sound

DurVal VAR Word ' Duration to sound tone

X VAR Byte General Counting variable

Page 28 - Process Control

e [Main Routine J----------comoommmm oo oo oo m oo -

GOSUB WaitForButton
GOSUB GetFreq

GOSUB GetCount
GOSUB GetDuration
GOSUB SoundTone

LOOP
L [Subroutines]----------------“- -
WaitForButton:
DEBUG CLS, "Press the pushbutton to begin",CR
DO
LOOP WHILE (PBVal=1)
RETURN
GetFreq:
DO

DEBUG CR, "Enter the frequency to play (1 to 4000)",CR
DEBUGIN DEC FregVal
LOOP UNTIL (FregVal <= 4000) ' loop until within range
RETURN

GetCount:
DO
DEBUG CR, "Enter the number of times to play (1 to 10)",CR
DEBUGIN DEC CountVal
LOOP WHILE (CountVal > 10) ' loop while out of range
RETURN

GetDuration:
DO
DEBUG CR, "Enter the duration to play tone in milliseconds (0 to 1000)",CR
DEBUGIN DEC DurVal

LOOP WHILE (DurVal > 1000) ' loop while out of range
RETURN
SoundTone :
FOR X = 1 TO CountVal ' Start X at 1 for counting up to CountVal
FREQOUT Buzzer,DurVal, FregVal
DEBUG "Buzzing ", DEC X,CR
NEXT ' Add 1 to X and loop if X <= CountVal

RETURN

Chapter 2: PC Based Monitoring and Control - Page 29

Chapter 2: PC Based Monitoring and Control

In the program LightAlarmWithSubroutines.bs2 from Chapter 1 (page 18), it would be
very difficult to determine rate of change, to look for trends, or to spot abnormalities as
numbers change on the screen. It would also be difficult at this point to change the
settings when the program is running since the alarm level setpoints are written in the
downloaded code. However, additional hardware and programming could be added to
your BASIC Stamp project to allow a means of adjusting the setpoints.

Process control systems that include computer monitoring and control are often referred
to as Supervisory Control And Data Acquisition, or SCADA systems. LabView" from
National Instruments is a very popular program in industry for data acquisition and
control, though it requires a fairly expensive license and sometimes additional interface
cards for your PC. StampPlot Pro from SelmaWare Solutions (and the authors of this
text) is an alternative that is flexible and very affordable, in fact free for use by home and
educational users. It was developed specifically for the monitoring and control of the
BASIC Stamp.

ACTIVITY #1: USING STAMPPLOT FOR MONITORING AND CONTROL

Parts Required
Same as Chapter 1, Activity #2 (page 6).

StampPlot Pro Version 3, Release 6, referred to as StampPlot from here on, will be used
as a PC based monitoring and control interface for many of the projects in this text.
StampPlot Pro and related files may be downloaded and installed from the Process
Control product page at www.parallax.com. From the Education menu, choose Stamps in
Class Tutorials. Scroll down to Process Control, then click on the link to the products
page. The download links will be at the bottom of the page.

v Download and install StampPlot Pro Version 3 Release 6 (or latest version).
v Run StampPlot from your desktop: Start — All programs — StampPlot Pro.

Figure 2-1 shows the default Plot Selection screen for StampPlot. Normally, one of the
plot images would be clicked for a StampPlot configuration. Instead, configuration files
called macros have been developed for this text. For more information on using
StampPlot, please see the StampPlot help files.

Page 30 - Process Control

< 2 =2

- —. S e Figure 2-1
E : E StampPlot Pro
Plots 2 analeg values In X-Y L dividual plotting p O dol
Icome to StampPlot Version 3 Release 2. Select a Plot | Plot Selection

Default Screen

From the Register Menu, select 'Free Home/Educ Standard License' to register
your version of StampPlot. A warning message that you will not be able to use
certain features to create macros will be displayed. These features are not
necessary for this text.

Click OK.

Close StampPlot.

Download and install the Process Control Macros from the same location as
StampPlot.

From your Start menu, go to Programs — Parallax Inc — StampPlot — SIC
Process Control — Ch 2 — sic_pc_light level.spm. This will load StampPlot
with the selected macro, a text file containing configuration and data
manipulation instructions for StampPlot.

StampPlot should load and look similar to Figure 2-2.

Chapter 2: PC Based Monitoring and Control - Page 31

B 51 Process Control - Light Level Plot -StampPlot Pro ¥3-Develeper Licensed ==l

B Hoom Logorg Mt Ae Yo (ebied b

oF| | S L

o000 Figure 2-2
soonan StampPlot with
e = — Light Level
Macro Loaded
B Y P R | ——f—l Set Range to Scales

YT wm ¢ mm . mm | wm | me o T,

Seconds

Open Log %
Lo
e coo Il scmmg: . , e

—
WERF

Let's test the software.

Run LightAlarmsWithSubroutines.bs2 from page 18.

Note the Com Port in use at the top-left of the BASIC Stamp Debug Terminal.
Close the Debug Terminal.

On StampPlot, select the Com Port noted in the Debug Terminal.

2 2 2 2

- Only one application can use a COM Port at any one time. The user must disconnect on
[1) StampPlot (F6) to program the BASIC Stamp. Conversely, the user must close the BASIC
\-/ Stamp Editor's Debug Terminal before connecting on StampPlot.

v Press F6 on the keyboard to connect. The C in the lower left corner should turn
green, and the R should begin flashing red.

Press F7 to enable plotting.

Press F12 to reset the plot.

Change the amount of light falling on your sensor. Three lines should begin
plotting, the current value (black) and the high (green) and low (blue) level set
points. Adjust the light of your sensor.

2 2 2

Page 32 - Process Control

Figure 2-3 is a sample plot for this activity.

10000.00

9000.00

8000.00

7000.00

6000.00

Figure 2-3
5000.00 Sample Light
200000 Level Plot

3000.00

Y\
Ve N

\/ A

2000.00

1000.00

7
[~

V\\,

0.00 12.00 24.00 36.00 48.00 60.00
Seconds

If the high and low-level setpoints are exceeded, a new window opens titled "Messages"
as shown in Figure 2-4. This lists the high and low level alarm messages sent by the
BASIC Stamp along with the date, time and seconds into plotting they were received.

Figure 2-4 Messages Window with Alarm Warnings

Briessoges i)
9/29/2003 09:50:33, 2553 LIGHT LEVEL HIGH! ;'

9/29/2003 09:50:28, 26.29,LIGHT LEVEL HIGH!
9/29/2003 09:50:39, 27 .06 LIGHT LEVEL HIGH!
9/29/2003 05:50:40, 27.82 LIGHT LEVEL HIGH!
9429/2003 05:50:43, 31.32 LIGHT LEVEL LO%W1
/29,2003 05:50:44, 32 29 LIGHT LEVEL LO%W!
:q/ 13 09:50:45, 3326 LIGHT LEVEL HIGH!

Clear Mezzages I

Note that the virtual meter is displaying the current value. Enter new values in the text
boxes under the meter and use your TAB key to move to another control to adjust the
meter range. You must TAB off the control, or click another control, before the data is
used. The meter alarm levels may also be set through the use of the next two text boxes,

Chapter 2: PC Based Monitoring and Control - Page 33

but notice that the plotted alarm levels DO NOT change since that information is coming
from the BASIC Stamp.

By clicking the "Set Range to Scales" button, the range of the meter will adjust to match
the current scale on the Y-Axis of your plot.

By un-checking "Local Alarm Silence", the PC will sound an alarm when the level
exceeds the meter's alarm levels (audio card & speakers required on the PC).

Code Discussion

StampPlot receives the serial data that was going to the Debug Terminal, analyzes it, and
based on the format, utilizes the data in different ways. All strings must end with a
carriage return as a general rule.

String Formatters
String Action

One or more values separated Strings are processed as analog values and plotted.
by commas

Strings are processed as digital values and plotted
accordingly.

Strings are processed as control instructions to
configure/control StampPlot.

String begins with %

String begins with !

String is not a value and has no Strings are processed as messages.
special start character

The analog data for the light levels is sent with the code of:

DEBUG DEC Photoval, ",", DEC PhotoMin, "," ,DEC PhotoMax,CR

An example of the data string sent for this code is: 500,825,5000.

The three comma-separated values will be plotted as three analog values. All strings sent
to StampPlot must end in a carriage return. The macro will also use these values in
updating the meter and for other uses.

Page 34 - Process Control

Challenge 2-1

Perform the following:

v Disconnect on StampPlot (F6).
v Save LightAlarmsWithSubroutines.bs2 under a new name.
v At the end of the Initialization section of your BASIC Stamp program, add:

DEBUG CR, "!SPAN 0,2000", CR ' Sets Y-axis range
v In the Main Routine po. . ..oop, add the code after po:

GOSUB DisplayPB
v In the subroutine sections add the following routine:

DisplayPB:
DEBUG IBIN PB, CR ' Plot pushbutton as digital
RETURN

IBIN is a modifier to send the value as indicated in binary. In the Debug Terminal you
will see %1 or %0 depending on the state of the pushbutton. The symbol % indicates the
value is binary.

< Plotting Multiple Digital Values: Multiple digital values may be plotted by sending a string

(1) of binary data preceded by %, such as %1011, which could represent four digital I/O states
or conditions. Use IBIN4 when sending 4 values to ensure leading zeros are sent.

Program the BASIC Stamp and close the Debug Terminal.
Reconnect on StampPlot (F6).

< <2

1. What effect does the code 1spaN 0,2000 have on the Y-Axis?

2. Press and release the pushbutton several times slowly. How is the digital value
of the pushbutton displayed?

Chapter 2: PC Based Monitoring and Control - Page 35

ACTIVITY #2: STAMPPLOT INTERACTIVE CONTROL
StampPlot also supports interactive control with the BASIC Stamp. The BASIC Stamp
can request data from StampPlot and use the data for updating parameters.

Parts Required
Same as Chapter 1, Activity #2 (page 6).

v Open StampPlot to the macro sic_pc_light level.spm.
v In the BASIC Stamp Editor, open LightAlarmWithSubroutines.bs2 from page 18
and save it with a new name.

Now let’s add the following elements to your code:

v In the Main Routine po. . .L.oop, add the code after po:

GOSUB ReadStampPlot

v In the Subroutines section add the following routine:
ReadStampPlot: ' Update values from StampPlot
DEBUG "!READ (txtMinA)", CR ' Read value of Min Alarm text
DEBUGIN DEC PhotoMin ' Accept data and store
PAUSE 50 ' Allow echo to clear from BS2
Al
1

DEBUG "!READ (txtMaxA)", CR Read value of Max Alarm text

DEBUGIN DEC PhotoMax Accept data and store

PAUSE 50 Allow echo to clear from BS2
RETURN

Run the modified program.

Close the Debug Terminal and connect on StampPlot. Both the lower-left R and
T indicators should be blinking as data is received and transmitted.

v Change the Min. Alarm and Max. Alarm text box values (be sure to Tab-off
to set).

< <2

What occurs to the alarm level setpoints on the plot? They should change to match the
new settings. The BASIC Stamp is reading the values from the interface.

Code Discussion
When the BASIC Stamp executes:

DEBUG "!READ (txtMinA)",CR

Page 36 - Process Control

...StampPlot recognizes the !READ instruction and sends to the BASIC Stamp the value of
txtMina, which is the name of the textbox containing the minimum alarm level. This
command:

DEBUGIN DEC PhotoMin

...accepts data arriving on the data port and stores it as a decimal value. Execution will
cease until serial data arrives. Another way to accept arriving data for above would be:

DEBUG "!READ (txtMinA)", CR
SERIN 16, 84, 200, TimeOutl, [DEC PhotoMin]
TimeOutl:

...where the parameters are:

SERIN pin, baud_value, timeout_value, timeout_label, [DEC variable]

While this looks more complex, SERIN does support timeouts. If StampPlot is not
connected, or if there were other communication problems, your program would not sit
idle endlessly waiting for data. This is usually an undesirable situation in a process
control scenario! Depending on your needs, either may be used.

The pausSE 50 after the SERIN allows data echoed back from the BASIC Stamp to clear
prior to sending new data.

When using DEBUGIN, it is important to begin the program with PAUSE 1000. Placing
A9 PAUSE 1000 in the Initialization section ensures that the COM port connection is stable
| 1) before requesting data from StampPlot. If it isn't, the BASIC Stamp will 'hang' awaiting data
- that never arrives. If the BASIC Stamp does appear to hang — no sign of data arriving —
press the reset button on the BASIC Stamp board.

Chapter 2: PC Based Monitoring and Control - Page 37

ACTIVITY #3: STAMPPLOT TOOLBAR CONTROLS

Parts Required
Same as Chapter 1, Activity #2 (page 6).

v Open StampPlot to the macro sic_pc_light level.spm.
v In the BASIC Stamp Editor, open LightAlarmsWithSubroutines.bs2 from page
18 and save it with a new name.

StampPlot is very versatile, and choosing what to use can be a little overwhelming. This
activity will explore some of the basic controls of StampPlot including the specialized
control section for the Process Control activities.

Figure 2-5 is the toolbar of StampPlot. Many of these controls will be important as you
perform data acquisition.

Figure 2-5 StampPlot Toolbar

| |ge| X #Eef« =]l -] l_ N | S
[0 = userstatus [[@ o

The toolbar control functions from left to right are listed. Important controls for this text
are indicated by an asterisk (*). For more information, please see additional StampPlot
documentation.

Z|E|S| @)

Open: Opens a saved plot, log file, macro, or snapshot image file.
Save: Saves the current plot data to a *.plt file in the StampPlot Data directory.

e Print: Prints the plot.
*Snapshot: Creates a JPG image of the plot and saves it to the StampPlot Data
directory.

Page 38 - Process Control

*’tl | 52| @)«

+|—

*Reset: Resets the plot to time 0 and erases the plot.

*Connect: Connects StampPlot to the selected Com Port. Note: StampPlot is
configured to reset the Stamp when the connection is made.

*Plot: Enables plotting of incoming data.

*Stop Plot: Stops plotting when the maximum time is reached (Stop normally
activates under other conditions, but has been configured for this for our
purposes).

*Shift Plot: Enables the plot to shift left when the maximum time is reached. If
Shift is not enabled, the plot will reset when the maximum time is reached unless
Stop Plot is enabled. (Turning shift off does not reset the plot by default, but has
been configured as such for our purposes.)

]

+—

*Double Y-Axis span or range.
*Half Y-Axis span or range.
*Shift Y-Axis span or range up.
*Shift Y-Axis span or range down.

)

*Double X-Axis span or range.
*Half X-Axis span or range.
*Shift X-Axis span or range left.
*Shift X-Axis span or range right.

Chapter 2: PC Based Monitoring and Control - Page 39

N[S E

Time Stamp: Add date and time to data for messages and data file.

Configure: Configures StampPlot for various settings and configurations.
Values: Shows plot values under mouse pointer and minimum and maximum
values plotted.

Messages: Opens Message Window.

Debug/Immediate: Opens the StampPlot Debug Terminal.

Playback: Allows playing of the current plot at various speeds.

[0.10000 =] |[0&D x

The left and right dropdown boxes below the toolbar can be used to select or enter a Y-
Axis analog span and X-Axis time span in seconds. Tab-off to set.

R

At the bottom are connection, data points and queue indicators.

C = Green when connected, red when disconnected.

R = Red when data is arriving.

T = Red when data is transmitted.

Top bar: Data points — This depicts how full the total number of data points for
storing data is. This data is used to redraw the plot when required. Once filled,
the oldest 25% data will be flushed from memory.

Bottom bar: Queue — This depicts the amount of data that has arrived and is
awaiting processing. If data arrives too quickly, this will begin to fill and
plotting will be delayed. If this occurs, place a PAUSE in the program to slow
down data sent to StampPlot.

Page 40 - Process Control

Challenge 2-3: Configuring StampPlot

1. Use StampPlot controls for a configuration to plot 30 seconds of data for a light
level range of 500 to 1000. The plot should reset and repeat every 30 seconds.

2. Use StampPlot controls for a configuration to plot 60 seconds of data for a light
level range of -2000 to 2000. The plot should stop at the end of that time.

3. Use StampPlot controls for a configuration to show 15 seconds of data for a light
level range of 0 to 5000. The plot should shift continually when the maximum
time is reached.

4. Open the Values Window while collecting data (Menu View—Values). Move
your mouse pointer over the plot and note how the values correspond to the X-
and Y-axis values.

ACTIVITY #4: SPECIALIZED INTERFACE CONTROLS

Parts Required
Same as Chapter 1, Activity #2 (page 6).
v Open StampPlot to the macro sic_pc_light level.spm.

v In the BASIC Stamp Editor, open LightAlarmsWithSubroutines.bs2 from page
18 and save it with a new name.

To support common tasks and data acquisition for this text, all the Process Control
StampPlot macro interfaces will have the control interface section bar shown below in

Figure 2-6.

Figure 2-6 Specialized Interface Controls for Process Control StampPlot Macros

Double-Click Plot to add Text

X Marks Spat| -

COM Port: m W Log Data

Sh
File Name: [Me[elEEl Open Log W Re - ’ N
Sa Laoacl 0 me
Auto Scale Y Delete Log Seftings Settings . - Clear Text on Plot

Chapter 2: PC Based Monitoring and Control - Page 41

COM Port: Used to select the serial communications port that the BASIC
Stamp is connected to.

File Name: An assortment of files and settings will use this specified name.
The user may change the name for collecting data under different file names as
desired.

Auto Scale Y: Auto-scales the Y-Axis based on the minimum and maximum
values for the currently plotted data.

Log Data: When checked, arriving data will be logged in a data file for review,
spreadsheets, or other uses. The arriving data will be time-stamped unless de-
selected on the toolbar. The filename will be (file name) dat.txt where
(file_name) is the text entered into the File Name text box.

Open Log: Opens the current data log in use. If the file does not exist, nothing
will occur.

Delete Log: Deletes the current data log.

Shift Amount: Specifies the percent the plot will shift to the left when the
maximum time is reached. Lowering this value allows smoother scrolling of the
plot but may slow plotting.

Real Time on X-Axis: Sets the X-axis to show time as date/time of day instead
of seconds.

Save Settings: Save the current configuration of the plot and screen controls to
the Windows registry. The data is saved using the text entered into the File
Name textbox. By changing the file name, unique configurations can be saved.
Load Settings: Loads a named configuration of the plot and screen control from
the Windows registry. The name of the configuration is the text in the File
Name textbox. This allows recall of specialized settings based on the user's
need.

Take Snapshot: Takes a JPG image of the plot. Images are saved to the
StampPlot Data directory (C:\Program Files\StampPlotPro _V3\Data). Snapshots
will be named using the text provided in the File Name text box.

View Snapshot: Opens the last snapshot taken with the default image software
installed on your computer.

Snapshot entire form: The snapshot is the plot only by default. By selecting
this choice, the snapshot image will be of the entire interface form. The interface
must remain visible on the screen when using this feature.

Snapshot Max Time: When the maximum plot time is reached, a JPG image of
the plot is created and saved to the Data directory. The name of the file will be

Page 42 - Process Control

the text in the File Name textbox. The user may also take a snapshot at anytime
by using the Snapshot button the toolbar.

Append Date/Time to image: Appends the current date and time to the
snapshot file name, (File Name)Date Time.jpg, to create unique image files
every time the plot reaches maximum time and "SnapShot at Max Time" is
enabled. If this is not enabled, the snapshot image will be over-written each time
unless the name is manually changed.

Double-Click Plot to add Text: When the plot area is double-clicked, this will
add the text in the box to allow annotating of your plot. New text may be
entered in the drop-down box and will be added to the drop-down for ready-
recall.

Clear Text on Plot: Clears your added text from the plot.

Challenge 2-4: Using Interface Controls for Logging

1.

Enable logging of data, delete the current logs, plot one minute's worth of
samples with levels above and below the setpoints, and view the logs. Note the
format of a line. Compare the data to the plotted value. What data is represented
for each comma-separated value?

Configure StampPlot to reset at the end of each plot (toolbar button) and to take
a snapshot of the plot when at the maximum time (interface checkbox). Allow at
least one complete plot to be collected. View the saved plot image.

Configure StampPlot to shift at the end of each plot with a shift percentage of
75%. Enable snapshots with the date and time appended, and to automatically
take snapshots at maximum plot time. Allow data to be collected for at least
three complete plots.

o Use 'Open Plot' on the toolbar.

o Change File type in the file open window to 'Snapshots (*.jpg)'.

o Note the name used for each snapshot. Select and open a snapshot.

Note the current settings of the interface controls, including the meter textboxes
(change these to something you'll remember). Save the current configuration
using the 'Save Settings' button on the interface. Close StampPlot and re-open
the macro. Use the 'Load' interface button and observe the changes to the
interface settings.

Chapter 2: PC Based Monitoring and Control - Page 43

5. Plot the light level and select to stop the plot at maximum. About halfway
through, fully darken the light falling on the sensor. Once stopped, annotate the
plot with text about what occurred at that point.

CONCLUSION

Computer based software is useful for data acquisition and control of a system. It allows
the operator to note current conditions, perform trend analysis, collect data to files, and
update system settings. StampPlot is specialized software designed for the BASIC Stamp
for this purpose.

StampPlot allows the real-time acquisition and plotting of analog and digital data.
Furthermore, it provides both specialized interfaces as in virtual instruments to view data,
and interactive control with the BASIC Stamp. Data strings from the BASIC Stamp can
be used to send analog data, send digital data, control StampPlot, or send messages to the
user. StampPlot also provides means to log data, messages and images to file for later
analysis and review.

SOLUTIONS TO CHAPTER 2 CHALLENGES

Challenge 2-1 Solution

1. The Y-Axis is set to values of 0 and 2000.
2. The pushbutton value is plotted as a blue trace at the top of the plot. It changes
between 2 states, high and low for binary values.

Challenge 2-3 Solutions

1. Use the right drop-down box below the toolbar at top to set a range. Manually
enter 0,30 and tab-off to set. The right + and — buttons may also be used to
adjust. Use the left drop-down box below the toolbar at top to set a range.
Manually enter 500,1000 and tab-off to set. The left + and — buttons may also be
used to adjust. To reset after 30 seconds, turn off the shift button on the toolbar
at top.

2. As in number 1, enter values for range and time in the top drop-down boxes and
tab-off. To stop the plot, the 'Stop' button on the toolbar should be on
(depressed). After being stopped, the plot will need to be reset prior to
connecting again or it will stop once again.

Page 44 - Process Control

As in number 1, enter values for range and time in the top drop-down boxes and
tab-off.

To shift and plot the 'Stop' button should be off, and the 'shift button' should be
on in the toolbar.

Challenge 2-4 Solutions

1.

Use the 'Log Data', 'Delete Logs' and 'Open Log' controls in the lower interface
section. A typical log entry is:

05/02/04 12:11:17.63,6.370,1,720,500,5000

Where the data represented is:

Date and time, seconds into plot, digital value of pushbutton (may be blank),
current value, minimum setpoint, maximum setpoint.

In general, the format will be:
Date and time, seconds into plot, digital string, each analog value

On the toolbar at top, the 'Shift' button should be up.
o On the interface controls, the 'Snapshot Max Time' control should be
checked.
o After shifting once, click the "View Snapshot' button to view.
On the toolbar at top, the 'Shift' button should be up.
o In the interface section, set 'Shift Amount' to 75%
Check the 'Append Date/Time' checkbox.
Check the 'Snapshot at Max Time' checkbox.
When you use the 'Open Plot' on the toolbar and select *.jpg, a list of
image names with data and time should be present.
When the configuration is loaded, the saved setting should return.
The toolbar 'Stop' should be on.
o Reset the plot and collect data.
o Once done collecting data, enter "Totally Dark!' in the 'Double-Click to
add text' drop-down box.
o Double-click the plot above the point it was darkened.

O 0 O

Chapter 3: Digital Input Conditioning - Page 45

Chapter 3: Digital Input Conditioning

Digital Input seems pretty cut and dried. An input voltage at Vdd is recognized as a
digital HIGH (binary 1). An input voltage at Vss (ground) is recognized as a digital
LOW (binary 0). However, what if the BASIC Stamp input is not connected to either?
What state will it assume, if any? What if the input is 2.5 V?

Devices which supply an input to the BASIC Stamp may not always provide +5 V for a
HIGH and 0 V for a LOW. It is important to understand the digital input characteristics
of the BASIC Stamp. Also important are the proper techniques of conditioning signals
from mechanical input devices such as pushbuttons. Conditioning from electronic input
devices is also frequently necessary as well.

In this chapter we will explore the input characteristics of the BASIC Stamp, the basic
operation of a BJT (Bipolar Junction Transistor) and mechanical and electronic switch
interfacing.

ACTIVITY #1: MEASURING THE THRESHOLD VOLTAGE

A HIGH level, or logic 1, is typically the positive voltage of the system. A LOW level,
or logic 0, is typically the negative supply, or ground reference, of the system. For the
BASIC Stamp these are labeled Vdd (+5 V) and Vss (0 V, which is “ground”).

What if the voltage at the input were 3.5 V? Is this HIGH or LOW? What about 2.5 V?
2.0 V? 1.0 V? Since a digital system only can be one of two states, at what input voltage
do the HIGH and LOW states transition? This activity will measure the threshold voltage
below which the input is LOW and above which the input is HIGH. An Analog to
Digital Converter (ADC) will be used to measure and plot the voltage levels at the input.
A full discussion of the ADC is covered in Chapter 6.

Parts Required

(1) ADC0831 Analog to Digital Converter
(1) 10 kQ Single-Turn Potentiometer

(2) 220 Q Resistor

(1) LED — Red

Page 46 - Process Control

v Construct the circuit in Figure 3-1.

<
o
[}

ADCO0831

P13 [DO——ilics ~ vad
—2]vin(+) cLK

3] Vin (-) DO

——<] P14
[P15

L

4]GND Vref

<
n
7]

Figure 3-1
Vvdd Analog and Digital
Data Monitoring

220 Q Circuit
P8 CIH—W\——e—<Rs

10 kQ

Example Program: DataMonitoring.bs2

v Enter and run the BASIC Stamp program DataMonitoring.bs2.

I cosos [T = T I e e e e
Process Control - DataMonitoring.bs2

Monitors and Plots Analog and Digital Data

{$sTAMP BS2}

{$pBASIC 2.5}

L [Declarations J------------------- oo -
DigDataln VAR Bit ' Digital input data
ADC_DataIn VAR Byte ' Analog to Digital Converter data

Chapter 3: Digital Input Conditioning - Page 47

LED PIN 0 ' LED output pin
DigIn PIN 8 ' Digital input pin monitored
ADC_CS PIN 13 ' ADC Chip Select pin
ADC Clk PIN 14 ' ADC Clock pin
ADC_Dout PIN 15 ' ADC Data output
L [Initialize] -——------mmmm e e e e e
OUTPUT LED ' Set LED as output
PAUSE 1000 ' Allow connection to stabilize
L [Main Routine J-------=---—"—"“~“~~ -~~~ ~« —— -~
DO
GOSUB ReadData
LED = DigIn
GOSUB PlotData
PAUSE 500
LOOP
L [Subroutines]----------------“- -
ReadData: ' Read ADC 0831
LOW ADC CS ' Enable chip
DighataIn = DigIn ' Read digital input value to coincide with ADC read

SHIFTIN ADC Dout, ADC Clk, MSBPOST, [ADC DataIn\9] '

HIGH ADC CS
RETURN

PlotData:

DEBUG IBIN DigDataIn,CR '

DEBUG "[",

DEC ADC DatalIn, '
v, %,.0196]",CR !

Clock in data from ADC
' Disable ADC

' Send data to StampPlot

Plot indicated binary value

' Bracket for StampPlot math operation
Analog data

Convert ADC value to voltage by StampPlot

RETURN

v Close the Debug Terminal.

v Load StampPlot with the macro sic_pc_data_monitoring.spm

v Connect and plot.

v Adjust the potentiometer. The analog voltage and plotted value should change
accordingly. LED,, on the BASIC Stamp output pin PO, indicates the
HIGH/LOW status of P8.

v Note the voltage at which the input P8 changes between HIGH and LOW logic

levels. This is the threshold voltage.

Figure 3-2 shows an example test in which the threshold voltage was found to be

approximately 1.45 V.

The digital trace at the top goes high and low as the analog

voltage goes above or below the threshold voltage.

Page 48 - Process Control

9.00 I I_[

8.00

7.00

o Figure 3-2

500 Logic Threshold
200 /_\\ Voltage Plot

3:33 / \
200 / \\
. ~\ » ﬁhre shold _,’

0.00 6.00 12.00 18.00 24.00 30.00
Seconds

Manufacturer data sheets provide guaranteed threshold voltage for a device. Legal HIGH
and LOW values are considered above and below these levels.

e Vi — Voltage In-High: Voltage above which assured to be HIGH on the
input.

e V. — Voltage In-Low: Voltage below which assured to be LOW on the
input.

For the BASIC Stamp:

o V]H =20V
o VIL =08V

The BASIC Stamp has a very clear and repeatable threshold. Halfway between Vi and
V. is the 1.4 V TTL logic threshold at which the input will change sensed states. Not all
digital devices have the same thresholds. Additionally, some inputs may employ Schmitt
Triggers, or hysteresis, where threshold levels differ, depending on whether the voltage is
increasing or decreasing to change states. The concept of hysteresis will be explored
further in later chapters.

Chapter 3: Digital Input Conditioning - Page 49

PROGRAM DISCUSSION

LED; in Figure 3-1 is used to indicate the state of P8: LED On = HIGH.

The potentiometer may simply be thought of as a variable voltage divider, such as in
Figure 3-3. Keep in mind that each of these potentiometer voltages, V(a), V(b), V(c), and

V(d), occurs as the knob on the potentiometer is turned to certain positions. Also keep in
mind that each of the voltages can be applied to P8 in Figure 3-1.

Figure 3-3 10 kQ Voltage Divider (Do Not Build)

The voltage output is a function of the voltage drop to ground across the lower portion of
the potentiometer illustrated by R2 in Figure 3-3. Kirchoff's Voltage Law states that the
“algebraic sum of the voltages in a series circuit must equal the supply voltage.” The
voltage dropped across R1 and R2 must equal the supply voltage, Vdd, of 5 V. Using
Ohm's Law, the circuit may be analyzed:

Current = Voltage / Resistance or [= V/R

The total resistance must equal the value of the potentiometer, 10 kQ. As such, the
current flow through the resistor is:

I=V/R=5V/10kQ=0.5mA

The wiper only changes where it is tapping and splitting the total resistance. The voltage
across R, for Figure 3-3b can be found by:

Page 50 - Process Control

Vie = I(Rpo)= (0.5 mA)(8 kQ) =4 V

How much voltage is dropped across R, in Figure 3-3b?
Vi1 =(IRg; =(0.5mA)2kQ))=1V

The total voltage of the series circuit in Figure 3-3Db is:
Vri+ Ve =1V+4V=5V

Kirchoff's Voltage Law is upheld in that the sum of the voltages equals the supply
voltage.

The voltage divider formula may also be used to find Vg:
Vro=Vdd(Rr»/R; + R3)) =5 V(8 kQ/(8 kQ +10 kQ) =5 V(8 kQ/10 kQ) =4 V

For Figure 3-3c, what is Vg,? Without using any math, we can see the resistances are
equal; therefore, the voltage drops must be equal to one-half of the supply voltage.

v Calculate Vg, for Figure 3-3d.

This voltage is measured by the analog to digital converter and used as input to P8.
When the voltage divider produces a voltage at or above 1.45 V, P8 senses a HIGH.
When below 1.45 V, P8 senses a LOW.

The analog to digital converter is measuring the voltage, 0 to 5 V, and the BASIC Stamp
is reading the ADC using the sEIFTIN instruction. The voltage is represented by 8-bits
for a digital value from 0 to 255. pEBUG sends this value to StampPlot in the form of:

DEBUG " [ADC Dataln,*,.0196]"

255x.0196 =4.998 V

The brackets instruct StampPlot to perform math on the data string prior to plotting it.
For a digital value of 128, the string would be [128,*, .0196].

StampPlot will perform the math, plot and display 128 * 0.0196 or 2.51, representing the
voltage. Deeper discussions on ADCs and scaling data are in later chapters.

Chapter 3: Digital Input Conditioning - Page 51

Saving digital input is performed within the routine to read the ADC, in an attempt to
read both the ADC and digital input at the same time. The ADC value and the digital
value may not track perfectly depending on how quickly the analog level changes.

Challenge 3-1: Reversing the Potentiometer Supply Voltage

v Note the direction of rotation needed to achieve an increasing voltage.
v Reverse the Vdd and Vss connections to the potentiometer.

What has changed when rotating the potentiometer? Explain why this change has
occurred. (Hint: Refer to Figure 3-3a, and consider what occurs when Vss and Vdd are
swapped).

ACTIVITY #2: NIGHT-LIGHT PROCESS

The input of the BASIC Stamp changing between HIGH and LOW at a fixed voltage can
provide a simple means of control using analog signals. The input simply needs to go
above and below the threshold level for the controller.

In this activity, a photoresistor will be added to the bottom of the variable resistor in the
ADC circuit from Activity 1. This modified circuit creates a light-controlled voltage
divider input to the BS2 for control of a light (the LED) at a certain level of darkness.

Parts Required

Circuit from Activity #1 (Figure 3-1 on page 46)
(1) Photoresistor

v Modify the circuit as shown in Figure 3-4 by adding the photoresistor between
the potentiometer and Vss. Do not modify the ADC or LED portions of the
circuit.

Re-run the program DataMonitoring.bs2, if needed.

Close the Debug Terminal.

Run StampPlot macro sic_pc_data_monitoring.spm.

Connect and plot.

Allow the photoresistor to be exposed to ‘daylight levels’ of light.

Adjust the potentiometer for a daylight voltage of 1.0 V.

2 2 2 2 2 =2

Page 52 - Process Control

Y Cast a shadow over the the photoresistor. What happens to voltage? When does
your light energize?

P13 [O——Tilics

P8

vdd
ADCO0831
~ v sl —o
——2|vin(") ek fl——<C] P14
fvne) pof———— P15
GND Vref [s}—
V;s
vdd Figure 3-4
R Photoresistor Added
22019 to Potentiometer
G - Portion of the Circuit
10 kQ
\\
R4
R, Lep, VS
220 Q //

V_ss

In the CdS (Cadmium Sulfide) photoresistor, light photons excite electrons and allow
them to flow more freely. This in turn changes the resistance. As light level increases,
resistance decreases. In our case, as we shade the photoresistor, its resistance increases.

A greater voltage is dropped on the bottom half of the voltage divider (from the wiper to
Vss). When the voltage drop to ground increases above the threshold voltage, the BASIC
Stamp senses P8 as a logical HIGH.

10.00

Chapter 3: Digital Input Conditioning - Page 53

9.00 l L L

8.00

1.00 f’f‘ /f \Pw-’\ JN\

0.00 6.00 12.00

18.00
Seconds

24.00

Challenge 3-2: Photographic Darkroom Alarm

v Modify the circuit to exceed the threshold when excess light falls on the sensor.
Draw your circuit modifications. Discuss settings and results.

30.00

Figure 3-5
Night-Light
Plot

ACTIVITY #3: UNCOMMITED INPUTS AND CONDITIONING SWITCHES

An uncommitted input is one not dedicated to a voltage potential, is said to be “floating”
and may not be sensed by the BASIC Stamp as a definite logic HIGH or LOW. Simply
connecting a mechanical switch between the input and Vdd leaves the input floating
when the switch is open. Current flow to Vdd or Vss is necessary to “commit” the input

(when in the open condition). This exercise will help make this concept clear.

Parts Required

(1) ADCO0831

(2) Resistors — 220 Q
(1) Resistor — 1 kQ
(1) Resistor — 10 kQ

(1) Pushbutton — Normally Open

(1) LED - Red

Page 54 - Process Control

v Replace the photoresistor circuit Figure 3-4 with the pushbutton circuit as shown
in Figure 3-6.

Re-run the program DataMonitoring.bs2

Close the Debug Terminal.

Run the StampPlot macro sic_pc_data_monitoring.spm.

Connect and plot.

2 2 =2 2

IS
[eX

ADCO0831

A\
ICS Vdd

P13 [O—1
—2|Vin (+) cLK

<] P14
—— > P15

T
2|
3] Vin () DO
4

GND Vref

L

<

SS

Figure 3-6

R, PB, Uncommitted
2200 = Pushbutton
P8 F—MWAV—e— oJ

PO

Monitor the digital and analog values.

Momentarily touch the lead of R; on the pushbutton side. What occurs? (Results
may vary depending on conditions.) Try rubbing your hair first to build up a
static charge on your hand.

v Press the pushbutton while momentarily touching the lead. What occurs?

<2 =2

Chapter 3: Digital Input Conditioning - Page 55

Figure 3-7 is a sample plot of the results.

soo J11 I | ML nnaanamn I I

oo Figure 3-7
Plot of

5.00 Uncommitted

a0 Input

3.00

2.00

1.00

o i A A Aa A

0.00 6.00 12.00 18.00 24.00 30.00
Seconds

When the pushbutton is pressed, current passes through the switch to register a solid
HIGH value. The input is now committed and no longer floating.

When the normally-open (N.O.) pushbutton is not pressed, the input to P8 is floating and
not committed to any voltage level. By touching the lead, the static electricity on your
body is creating voltage spikes on the input above the threshold voltage. This noise
causes the digital input to switch states. During process control, the uncommitted input
may cause erratic and undesirable conditions. Again, the monitored analog voltage and
digital input are not measured simultaneously and may not match HIGH and LOW values
exactly.

v Place a 10 kQ resistor from the P8 side of the pushbutton to Vss as shown in
Figure 3-8.
v Test the circuit again. Are the results more stable?

Page 56 - Process Control

P13 [>———iics vdd|[g}

—g|vin") ek fl——<_1 P14
61
1
5—

IS
[o%

ADCO0831
A4

3} Vin (-) DO

4| GND Vref

Vss
R, PB, vdd ;ig:lure I—?'-Sh
220 O ctive-Hig
P8 S Pushbutton with Pull-
+d q Down Resistor
<
5
VRf 2 oko
o)
Vss
R, LED,
220 Q A
PO [O—WV N Z J_
Vss

The pull-down resistor Rs is used to force the input to a low voltage when the pushbutton
is not pressed, keeping it LOW. When the button is pressed, current flows through Rs,
allowing a HIGH to be sensed on P8. The pull-down resistor should be sized to prevent
excessive current flow when the button is pressed.

IRSZVR5/R5 =5V/10kQ =0.5 mA

Typical values for resistors used for this purpose are 1 kQ, 10 kQ or even 100 kQ. A
minimum amount of current is required, typically several microamps.

Chapter 3: Digital Input Conditioning - Page 57

The pushbutton circuit is termed Active-High because when the button is active
(pressed), the input state will be HIGH, a pull-down resistor is used to force the input
LOW (when the pushbutton is not pressed).

Always check data sheets for the digital device in use. Different devices have different
A~ input voltage and current specifications. They may be damaged by static electricity when
(1 /) inputs are left uncommitted. Some devices may have internal pull-up resistors, alleviating
\-/ the need of adding them to the input. TTL devices will typically assume a HIGH state if not

connected, but this is not assured, especially during internal clocking or switching.

Challenge 3-3: Active-Low Pushbutton Circuit

Consider the circuit in Figure 3-9.

1. This circuit is termed Active-Low. Why?
2. Does this circuit use a Pull-Up or Pull-Down resistor? Why?
3. Reconfigure your circuit to match, and test. Discuss your results.

Vdd
R, Figure 3-9
Ry 10ka PBi Active-Low
220 Q e Pushbutton Circuit
P8 o——l_
V_ss

ACTIVITY #4: THE TRANSISTOR AS A SWITCH

The transistor revolutionized electronics and is the basic building block in both analog
and digital systems today. The Bipolar Junction Transistor (BJT) can be used as an
amplifier to take a small analog signal, such as sound waves hitting a microphone, and
amplifying that signal many times to be blasted out by speakers at rock concerts.

The transistor may also be used as a digital switch — ON or OFF. The BASIC Stamp and
the microprocessor that runs your computer system are two examples of thousands, or

Page 58 - Process Control

millions, of transistors working together as an Integrated Circuit (IC) to perform
sophisticated operations.

As a switch, the transistor may be driven to a condition where it drops virtually no
voltage and allows full current flow in a load. In this condition, it acts similar to a closed
switch. No drive control applied to the transistor causes it to behave like an open switch.
The transistor is semi-conductor configured to control current flow, allowing it to be fully
on, fully off, or anywhere in between.

Figure 3-10 represents a typical discrete transistor. A BJT has 3 leads: Base (B), Emitter
(E) and Collector (C). This transistor symbol tells us that it is an NPN.
IB

C llc
—

B Figure 3-10
2N3904 NPN Transistor

mwo

2N3904
E lIE

The BJT is a current-controlled device. A small base-current (Ig) is used to control a
much larger collector-current (Ic). Ig controls Ic.

The transistor has 3 operating regions and can be thought of as a water valve. When the
valve (the base) is off, there will be no water flow in the pipe (collector-emitter). As you
begin opening the valve, the amount of water flowing in the pipe is proportional to how
far the valve is opened. At a certain point, opening the valve any further may not
produce any appreciable change in water flow. Restrictions in the pipe and supply water
pressure limit the flow rate.

There are three operating regions of the transistor as shown in Figure 3-11.

e Cutoff Region: Insufficient voltage on the base to produce appreciable current
flow in the base and, therefore, no collector current. As an electronic switch, the
collector to emitter is "open" and collector-current (I¢) is essentially zero.

e Active Region: The amount of current flow in the collector is directly
proportional to the current flow in the base. The BIT is somewhere between
fully-off and fully-on, controlling current flow. I¢ is equal to the base-current

Chapter 3: Digital Input Conditioning - Page 59

(Iz) multiplied by a gain factor called Beta (B) or, when dealing with strictly DC
values, hgg.

IC = IB X hFE-

e Saturation Region: An increase in base current does not change the collector
current. The electronic switch is closed. Resistance in the collector-emitter
circuit limits Ic. The transistor is in saturation, and the collector current is
termed saturation current (Isat).

In keeping with Kirchoff’s Currrent Law (KCL) which states that the algebraic sum of the
L= currents entering any node is zero:
.

Ig+lc-1lg=0

le=lg+Ic

Figure 3-11 Transistor Current Flow and Characteristic Curve

AN Saturation Region (I = Igat)

|
B Vee c

<«—— Active Region (I, =13 xh
(mA) g (Ic = lg x hgg)

— Cut Off Region (I =0)

ls (WA)

All devices have limits and specifications for proper operation. Table 3-1 shows the
pertinent specifications for the 2N3904. Some specifications are characteristics of the
device, such as the voltage drop at the base-emitter junction (denoted by “Device” in the
table). For example, the Collector to Emitter voltage drop is typically 0.3 V when current
is flowing.

Other specifications are limitations imposed on the user to prevent damage to the device
(denoted by “Use” in the table). For example, the maximum supply voltage to the device.

Page 60 - Process Control

Table 3-1: 2N3904 Transistor Specifications
Parameter Value Meaning
hre or 3 100 - 300 Current Gain Ic/lg (Device)
Maximum Collector Current
le 200 mA Continuous (Use)
Voltage dropped Collector-Emitter
Vee 03V when in saturation (Device)
Vee 065V —0.95V 'Volta'ge across Base-Emitter
junction (Device)
Maximum Voltage Collector-Emitter
VEco 40V (Use)
Po 625 mW Maximum Power Dissipation (Use)

Let's perform testing and calculations for a simple transistor circuit.

Parts Required

(1) ADCO0831

(2) Resistors — 220 Q
(1) Resistor — 1 kQ
(1) Resistor — 47 kQ

(1) Potentiometer — 10 kQ

(1) Transistor — 2N3904

(1) LED — Red
\/
\/
v Close the Debug Terminal.
\/
v Connect and plot.

Construct the circuit shown in Figure 3-12.
Run the program DataMonitoring.bs2

Run StampPlot macro sic_pc_data_monitoring.spm.

Chapter 3: Digital Input Conditioning - Page 61

<
[}
[y

ADCO0831
P13 [O—— i]ics ~ vdd [e}—
—2|vin+) ck|i——F—< P14
3|vin() poleb———> P15

4GND Vref [5}—

P8
RS
10 kQ Q
2N3904

Vss Vss
R, LED,

220 Q Ve

PO [O——AWW —

Figure 3-12
Transistor
Monitoring
Circuit

v Connect ADC-IN to Vp. Adjust the potentiometer and note the direction that

causes an increase in voltage (clockwise or counterclockwise).

v Disconnect ADC-IN from Vp and connect it to Vcg. What occurs as the
potentiometer is adjusted? Does the increase in voltage follow Vp, or is it just

Page 62 - Process Control

the opposite of it? Does the voltage at Vg change over the full movement of the
potentiometer or only over a portion of movement?

Analyzing what is occurring with reference to Figure 3-13:

e As Vpincreases in voltage, the current through the base (Ig) increases.
e [y increasing leads to increased current in the collector (I¢).
e AslI¢is increased, more voltage is dropped across the collector resistor Re.

Vre =IcRc

e The voltage drop across the transistor Collector to Emitter (V¢g) must decrease.
Veg =5 V-Vge

e So, as V, increases, Vg decreases over a certain range.

As the potentiometer is adjusted from minimum to maximum, the transistor goes from
cutoff through the active region to saturation.

Figure 3-13

Chapter 3: Digital Input Conditioning - Page 63

Voltage and Current Characteristics

Cutoff Region:

With insufficient base current, the transistor will essentially be off (an open switch) and
acts as a very high resistance from collector to emitter. Ic will be zero, and the voltage at
the output (Vcg) will be supply voltage, or Vdd in this case. This is also known as
Veutorr.

Linear Region:

In the linear region, the collector current, (Ic), is a function of the base-current multiplied
by the DC gain of the transistor, hgg. The 2N3904 can have a gain of 100 to 300. Vg is
a function of the current flow, creating a voltage drop across Rc.
For example, given: hgg = 200, [3=10 HA, and a 5 V supply; calculate Ic, Vrc and Vcg.

Ic = I hee = (10 £A)(200) = 2000 pA = 2 mA.
VRC = IC RC = (2 mA)(l kQ) =2V
Vee=Vdd —Vgc=5V-2V=3V

P Vcce vs. Vdd Officially, the collector voltage is called Vcc when working with BJTs which

* ' have a collector. Vdd is more properly used with Field Effect Transistors (FET) which have

\b‘ a drain instead of a collector. The BASIC Stamp is constructed with FETSs, thus the Vdd
designation is used.

What if Ig were 100 pA? What do the calculations show for I¢, Vrc and Vg?

Ic = Iy hpe = (100 LA)(200) = 20000 pA = 20 mA.
Vre =Ic Re = (20 mA)(1 kQ) =20 V
Vep=Vdd —Vee=5V-20V= 15V

Does this make sense? How did we get 20 V across R¢ with a supply of 5 V? The
transistor had long gone into saturation when Vg went down to 0 V and all of Vdd was
applied across Re.

Page 64 - Process Control

Saturation Region:

As shown, there must be some limit to how much current can be developed in the
collector. The current limit is based on the supply voltage and the value of R¢ and is
called saturation current (Isat).

IsaT = Vdd/Rc =5 V/1 kQ =5 mA.
At saturation, when the transistor is in full conduction, Vg will be at the minimum, and
the transistor will be conducting as much collector current as possible based on the
restriction of R¢ (fully-on or acting as a closed switch). At saturation, the collector to

emitter junction of the transistor will always drop a small amount of voltage, typically 0.3
V. Therefore, Isat will be slightly less.

IsaT=(Vdd = 0.3 V)/Rc=4.7 V/1kQ =477 mA

Over a current range of 0 mA to 4.77 mA, the transistor will be in the active region. With
an hgg of 200, control is defined over a range of 0 mA to 23.5 pA for Ip.

Ig= IC/hFE =4.77 mA/200 =23.5 HA

Any base current above this value will cause the transistor to be in saturation and at
maximum current.

Consider an increase in the value of R¢ to 10 k€. Based on a 5 V supply, with an hgg of
200, calculate values for Igat and Iy at saturation.

Isar = (Vdd—0.3 V)/Rc =4.7 V/10 kQ = 0.477 mA
Ig = Ic/hpg = 0.477 mA/200 = 2.35 pA

Would the potentiometer require more or less voltage to drive the transistor into
saturation? Since 10 times less current is required, 10 times less voltage is required at the

base to drive the transistor into saturation.

Transistor Power Dissipation

Power is the work performed by a device or system per unit of time. In electronics power
is measured in watts. Light bulbs are devices we commonly purchase based on the power
output, such as 60 watt, 100 watt or even 200 watt bulbs. A light bulb's power is in the

Chapter 3: Digital Input Conditioning - Page 65

amount of light that is produced (lumens) as well as the heat produced and dissipated to
the air around it. Any device that has current flowing through it and a voltage drop
across it coverts electricity into power. This power may be useful work (light, motion) or
heat to be dissipated — which could also be useful at times, such as your clothes dryer.

DC Power Dissipation: The power dissipated by an element in a DC circuit is given by the
A~ voltage across the element multiplied by the current flowing through it:

(1) _
\-/ Power = Voltage x Current
P=VI

When the power takes the form of heat, it must be dissipated from the device either by
convection to the air or through other means. The CPU in your computer system
consumes a large amount of power, and if the heat is not removed, damage to the CPU
will quickly occur. Heat sinks provide heat conduction from the device, a greater area of
cooling and often fans are added for forced convection to remove heat more efficiently.

Transistors, such as the ones in your CPU, have current flowing through them and have a
voltage drop across them. Since a transistor operates in 3 distinct areas, when is the most
power consumed?

e When in cutoff, the voltage drop is at maximum (Vcyrorr), but current flow is
minimum (theoretically 0).

e When in saturation, the current flow is at maximum (Isat) but the voltage drop is
minimum (0.3 V).

Maximum power is used by the transistor when it is mid-point biased where Vg is %2
Vcutorr and current is %2 Isat (these occur at the same time).

Pqi Max = 2 (VdAd) X /2 (Isat)
For our circuit, the highest power can be calculated:

Vdd=5V,ISAT=5mA
Poi max = (0.5)(5 V) X (0.5)(5 mA) = 6.25 mW

The maximum power that the 2N3904 can dissipate (Pp) is 200 mW without adding heat
sinks and fans. We are well within the device’s specifications.

Page 66 - Process Control

Keep in mind that when using the transistor as a switch (in saturation or cutoff), the
maximum power occurs only during the transition so that the power dissipated will be
very low. The more frequently the transition occurs (frequency), the more the transistor
is passing through the active region; therefore, the higher the average power that is being
dissipated.

Challenge 3-4: Calculating Current and Power

Given a 2N3904 transistor with a collector supply voltage of 40 V and R¢ of 500 €,
calculate Isat and Pg; max. Is there a concern based on power consumption and heat
generation?

ACTIVITY #5: EFFECTS OF RESISTOR SIZING

Rc size plays a big role in the circuit by defining Isar and power. It also plays a role in
the response of the circuit, how quickly it can respond to input changes.

Parts Required

Circuit from Activity #4
(1) Resistor — 10 kQ

v Begin with the circuit from Activity 3, Figure 3-12 with ADC-IN connected to
V.

Run the program DataMonitoring.bs2.

Run the StampPlot macro sic_pc_load line.spm.

Connect and plot.

Adjust the potentiometer slowly between its minimum and maximum values.

2 2 =2 2

StampPlot calculates and plots the DC Load Line for this value of R¢ (1 k). You can
see a sample image in Figure 3-14.

The Load Line is a graphical representation of V¢g to I¢ over the linear region. Note that
when in cutoff, Vg is at the supply voltage of 5 V. When in saturation, I¢ is at
maximum, based on the size of Rc and Vdd. Furthermore, based on I¢ and Vg, the
power of the transistor (Pq;) is plotted. Note the shape of the curves and when power is
the maximum.

Chapter 3: Digital Input Conditioning - Page 67

Figure 3-14 DC Load Line and Transistor Power

1

\/
\/
\/

0.00

9.00

.00

7.00

Powjer

6.00

5.00+

4.00

[1) .“gﬁ
IC - Saturation 4‘ e

3.00

[]
i L]
’I \C Load Line o

2.00

1.00

0.00

7 '"‘\.‘%: .

S -~y

A . 5.00
Vece YCE- Cutoff

Adjust the potentiometer slowly. Note the range over which the load line goes
from cutoff to saturation.

Replace R¢ with a 10 k€ resistor.

In StampPlot, change the value of R¢ to 10.

Adjust the potentiometer slowly over its full range.

What happens to the load line? The value of Isar is smaller by a factor of 10. Power is
reduced by a factor of 10 also.

Relative to using a 1 kQ value for R¢ (see Figure 3-12 and Figure 3-13), how much
movement does it now take to control the transistor over its full active range? Since Isar
is so much smaller, a much lower value of Iy required for saturation is defined, and thus a
much lower value of Vp to reach saturation, which means the potentiometer needs to be
rotated a smaller amount.

v Return R to a value of 1 kQ.
v Change StampPlot RC value to 1.

Page 68 - Process Control

v Reset the plot and re-acquaint yourself with the results of movement for the
potentiometer.

Replace Rp with the 10 kQ resistor.

Reset the plot and adjust the potentiometer very slowly to obtain a new plot.

< <2

Has the load line for the 1 kQ resistor changed? How much movement of the
potentiometer is required over the full active region as compared to the 47 kQ2? When Rp
is reduced, the base current is higher for the same voltages. Because I is higher, Ic is
higher over a smaller movement range of the potentiometer.

v Return Rg to a value of 47 kQ.

Challenge 3-5: Considerations for a Transistor Switch

1. If the transistor were being used as a digital switch, would a higher or lower
value of R¢ be desirable based on the DC Load Line and input voltage response?
Why?

2. What would the DC Load Line look like if a 100 kQ resistor were used for Rc?

Draw a plot of the Load Line and Power. Scale the plot accordingly for
readability.

Other Considerations in Sizing Resistors

While it may appear that a high value of R¢ is desirable for switching action of a
transistor, this is not necessarily the case. The switching speed of the circuit is faster as
the value of Rc decreases. The data sheets for the 2N3904 can lend credence to this. In
later chapters we will see this in action. Figure 3-15 is a characteristic curve of rise time

(tr) vs. Ic.

As Ic increases (lower Rc), the rise time of the transistor decreases. This is
approximately the time required to go from cutoff to saturation. The lower the rise time
value, the faster the transistor can go from cutoff to saturation and vice-versa. Increasing
Rc leads to increased sensitivity but slower switching.

Chapter 3: Digital Input Conditioning - Page 69

Rise Time vs Collector Current

500 == 1
\\ []
[
AN V=40V I =l,= —
. N 10
2 N
£ 100 N
(0]
E] Figure 3-15
° \\ 2N3904 Transistor
L2 Characteristic Curve
04 \\
. N
10
5
1 10 100

I Collector Current (mA)

Another effect is loading on the output. Take, for example, a voltmeter with an input
impedance of 1 MQ. If R¢ is 1 MQ and the transistor is in cutoff, what voltage will be
read? It should be 5 V since the transistor is in cutoff, but R¢ of the output and the meter
input form a voltage divider as shown in Figure 3-16. The actual measured voltage
would be 2.5 V. This is termed “loading”.

Figure 3-16
Loading Effects

Page 70 - Process Control

/ ® Impedance is similar to resistance, but also takes into account AC characteristics, which will
\b not be explored in this text.

Ideally, the output impedance of a device should be zero, and the input impedance should
be infinite to transfer the maximum voltage. Since we don't live in an ideal world, the
input impedance should be at least 10 times the value of the output impedance between
devices so that loading effects are not an issue. For example, if the input impedance of a
device is 1 M, the output impedance of the device supplying it should be no more than
100 kQ.

Using the transistor as an input from another device, a higher base resistance is desirable
to prevent loading and excessive current from the supplying device. Note that the control
of the transistor is dependent on base current. As long as Rg is sized properly, this
voltage may be smaller or larger than Vdd. This allows a means to interface devices
operating at different supply voltages.

ACTIVITY #6: SWITCHING CONFIGURATION COMPARISONS

Figure 3-17 is a comparison of an Active-Low pushbutton switch and the common-
emitter transistor circuit that we have been using.

Figure 3-17 Switch Equivalent Common-Emitter Configuration

N. O. Active Low Switch with Pull-up Common-Emitter Configuration
Vdd Vdd
R1
1kQ R,

220 O

VI
pe

<
n
»

Chapter 3: Digital Input Conditioning - Page 71

Note the similarities in operation:

e The pushbutton is activated by pressing it. The transistor is active (in saturation)
when sufficient voltage is applied to V| providing the base current required.

e Both circuits have a HIGH output when the switch is not active through the use
of pull-up resistors.

e Both outputs go LOW when the device is activated.

Another transistor configuration is the common-collector. What is common (emitter,

collector, or base) can be recognized by which terminal is NOT used by either the input
or the output. Consider the comparison in Figure 3-18 to a pushbutton switch.

Figure 3-18 Switch Equivalent Common-Collector Configuration

N. O. Active High Switch with Pull-down Common-Collector Configuration

\le_d Vdd

ps,

R2
220 Q
VO VO

R1

1kQ
Vss

The transistor will be in cutoff and act as an open-switch when insufficient V; is applied
to the transistor base. Just as with the pushbutton the output will be LOW through the
pull-down resistor.

When V| is a sufficient voltage, the base current will drive the transistor into saturation,
acting as a closed-switch and Vdd will be felt on the output (minus 0.3 V dropped across
the collector-emitter junction).

Page 72 - Process Control

The common-collector is slightly more difficult to analyze, and we will only briefly
discuss it. In the common-emitter the base current is calculated through:

IB = (V1_07)/RB
The collector current is determined from this value using hgg.

Ic =15 heg
In the common-collector, what determines the base current? Both Rp and R are in series
from Vss to Vi, so a quick assumption would be Rg + Rg. But this is not correct because
Rg lies on the emitter side, so the effects of hpg must be considered. From the base's
perspective, Rg is not 1 k€ for this circuit but hgg X RE.

IB = (V] - 07 V)/(RE hFE + RB)
Reducing the value of Rg to zero with a Vin of 5 V there may be insufficient base current
to drive the transistor into saturation current. Igat is defined by Vdd/Rg in this

configuration. Assuming hgg = 100:

IB = (V]* 07)/(hFE RE + RB)
Is = (5 V- 0.7)/((100)(1 kQ) + 0) = .043 mA

IC:IB hFE = 43 mA

ISAT = (Vdd - 03)/RE
Isar=(5 V=03 V)/ 1 kQ =4.7 mA

With a Vi of 5 V and no Rp, Ic is almost at Isat, but not quite.

Challenge 3-6: Decreasing Rg in the Common-Collector Configuration

If Rg is decreases to 100 , will a 5 V Vin and Rg of 47 kQ be able to drive the transistor
into saturation?

Chapter 3: Digital Input Conditioning - Page 73

ACTIVITY #7: TYPICAL INDUSTRIAL SWITCHES

The pushbutton is just one of many switches available. Figure 3-19, Figure 3-20, and
Table 3-2 show a variety of different switches commonly used in industrial applications.
These switches may be either mechanical or electronic in their operation.

A mechanical switch, such as the pushbutton, opens or closes contacts to allow current to
flow. When being used as an input to the BASIC Stamp, a pull-up or pull-down resistor
is needed. The need for output conditioning is true of many electronic switches as well.

Electronic switches that provide “non-contact” detection are very popular in industrial
applications. No physical contact for actuation means no moving parts and no electrical
contacts to wear out. The pushbutton switch used earlier should be good for several
thousand presses. However, its return spring will eventually fatigue, or its contacts will
arc, oxidize, or wear to the point of being unreliable.

Suilehes

Figure 3-19
Different
Switches used
in Industry

Page 74 - Process Control

Table 3-2: Schematic Symbols for Various Industrial Switches

Mechanical Proximity Relay
U Limit Switch Contacts
Normally _ 555 g —
Open T
Normally | —
Closed 7/é

The proximity switches shown in Figure 3-20 are commonly used in industry to detect
the presence of an object and operate on one of three principles:

e Inductive proximity switches sense a change in an oscillator’s performance when
metal objects are brought near. Most often, the metal objects absorb energy via
eddy currents from the oscillator, causing it to stop.

e (Capacitive proximity switches sense an increase in capacitance when any type of
material is brought near. When the increase becomes enough, it causes the
switch’s internal oscillator to start oscillating. Circuitry is then triggered, and the
output state is switched.

e Optical switches detect the presence or absence of a narrow light beam, often in
the infrared range. In retro-reflective optical switches, an object moving into the
switch's range may reflect the light beam back to the sensor. Through-beam
optical switches are set up such that the object blocks the light beam going
between the light source and the receiver.

Chapter 3: Digital Input Conditioning - Page 75

Figure 3-20
Inductive, Capacitive
and Optical Proximity
Switches

A common final output stage of an electronic switch is shown in Figure 3-21.

—O
Figure 3-21
Typical Electronic
Switch Output
wi utpu

This configuration allows maximum flexibility for engineers in integrating it into their
systems. The output may be configured as common-emitter or common-collector, and
the resistors sized appropriately.

Page 76 - Process Control

Other devices may simply output a digital HIGH and LOW. If the device does not use
the same supply, ensure that output voltages are compatible with the BASIC Stamp. If
the switch is powered from another supply, the grounds will need to be connected
together. Figure 3-22 and Figure 3-23 illustrate various methods of interfacing digital
devices.

Vdd
Any TTL
Qutput
+5V Logic —~— "> BS2Input igure 3-
Fi 3-22
Digital Interface
Circuits
Vss Top: Standard TTL
to BASIC Stamp

+2V_to +5V Vdd
Bottom: Low Voltage

Logic to BASIC
10 kQ Stamp

+3V Logic BS2 Input

Vss

Figure 3-22 (top): TTL and CMOS logic inputs powered from a +5 volt supply can be
applied directly to the BASIC Stamp input pins. If the two systems are supplied from the
same 5 volts, great. If not, at least the grounds must be common (connected together).

Figure 3-22 (bottom): Low-voltage (+3 V) devices can be interfaced using a 74HCTO3,
or similar open-drain devices, with a pull-up resistor to the BASIC Stamp module’s +5
volt supply. Supply the chip with the low-voltage supply and make the grounds common.

Chapter 3: Digital Input Conditioning - Page 77

+5V to +15V vdd B
74HC4050 74HC4050
+5V to +15V — [~
: O BS2 Input
Logic L L = P Figure 3-23
Digital Interface
= = Circuits
Vss Vss
Top: High
Voltage Logic to
BASIC Stamp
Vdd
4.7 kQ I
0V = OFF ' S 10kQ Bottom:
12V =ON O Wy 1 5¢——{ > BS2Input Optocoupler to
AN35 BASIC Stamp

S

o
N

'I|—N7/K—

<
n
»
<
n
»

Figure 3-23 (top): Higher-voltage digital signals can be interfaced using a 74HC4050
buffer or 74HC4049 inverter powered at +5 volts. These devices can safely handle inputs
up to 15 volts. Again, the grounds must be common.

Figure 3-23 (bottom): An opto-coupler may be used to interface different voltage levels
to the BASIC Stamp. The LED’s resistor holds current to a safe level while allowing
enough light to saturate the phototransistor. The input circuit can be totally isolated from
the phototransistor’s BASIC Stamp power supply because they do not need to share a
common-ground. This isolation provides effective protection of each circuit in case of an
electrical failure of the other.

The optical reflective switch will be explored further in Chapter 4.

Page 78 - Process Control

Challenge 3-7: Wiring a Relay

The relay can use high voltage, AC or DC, to energize a solenoid that closes or opens
electrically isolated mechanical contacts that can be used as input to the BASIC Stamp.
Signal conditioning these contacts is similar to the use of pull-up or pull-down resistors.

v Wire the contacts (by drawing) in Figure 3-20 so the BASIC Stamp senses a
HIGH when S1 is closed, which energizes the solenoid and magnetically opens
the normally closed relay contacts labeled K1.

S1 Figure 3-24
Sensing 115 V with a
P8 Relay

K1 # 115 VAC (Drawing to be
completed by
student — do not
build)

CONCLUSION

When acting as inputs, the BASIC Stamp typically senses a digital HIGH value for any
voltage above approximately 1.4 V and a digital LOW below 1.4 V. An input to the
BASIC Stamp does not necessarily need to be 5 V or 0 V, but must at least cross this
threshold voltage. Input voltages above 6 V will damage the BASIC Stamp.

BASIC Stamp inputs are uncommitted. That is, they are neither HIGH nor LOW without
an input committing them to the positive voltage or down to ground respectively. Most
mechanical switches require a pull-up or pull-down resistor for an Active-Low or Active-
High configuration respectively. Mechanical and electronic switches often require proper
conditioning.

Bipolar Junction Transistors (BJT) are current controlled devices that can operate as
current amplifiers or electronic switches. The base current controls the current in the
collector. With no base current, the transistor will be cutoff and act as an open switch.
With sufficient base current, the transistor's collector current will be at saturation, and the
transistor will act as a closed switch. The saturation current is a function of the supply

Chapter 3: Digital Input Conditioning - Page 79

voltage and the resistance of the collector for the configuration studied. The DC Load
Line is a graphical representation of output voltage and collector current over the linear
range.

The value of R¢ in a common-emitter configuration determines the saturation current,
and thus, the base current required to drive the BJT into saturation. The higher the value
of Rc the more sensitive the transistor will be to base current. But high values of R¢ also
limit response and switching speeds of the transistor. The maximum power dissipated by
the transistor occurs when it is conducting 'z of saturation current, which leads to heating.

SOLUTIONS TO CHAPTER 3 CHALLENGES

Challenge 3-1 Solution

When the potentiometer supply leads are reversed, rotation will result in the opposite
direction of voltage change as compared to previously. For example, when rotated clock-
wise, the wiper of the potentiometer will be closer to Vdd as opposed to Vss previously.

Page 80 - Process Control

Challenge 3-2 Solution

Placing the photoresistor on the Vdd side of the potentiometer modifies the circuit for a
darkroom sensor. When more light falls on it, the resistance decreases dropping more
voltage across the bottom half causing voltage to increase. The potentiometer must again
be adjusted for the desired light/dark threshold in the darkroom.

Vdc
ADCO0831
P13 [D>———Tilcs ~ vddfs—se
—Fvn) cxf——+ P14
fvne) pof————> P15
4GND vref [s—
Figure 3-25
\Vdd Photographic Darkroom Alarm
Vss N Circuit Solution
R,
R1
220 Q
P8 CI—MW——e—>2 R
10 kQ
V_ss

Challenge 3-3 Solution

1. The circuit in the figure is termed Active-Low because when the button is
pressed (active) a connection is made to Vdd.

2. A pull-up resistor used to keep the input high (up = high) when the switch is not
active.

3. Your circuit should look like Figure 3-26. Pressing the button after reconfiguring
should have caused the digital plot to go low.

Chapter 3: Digital Input Conditioning - Page 81

ADC0831
A4

P13 [O—— iJics Vdd [e}—

——2JVin(+) ck[F—1—_] P14
3 6—
4 s—

Vin() DO ——1{ > P15
GND Vref
Figure 3-26

= Active-Low
Vss Vdd Pushbutton Solution
R5
10 kQ
R PB,
220 Q e

P8 CJ—MW\V——e—o Oj

Challenge 3-4 Solution
IsaT = (40 V=0.3 V)/500Q2 = 79.4 mA

Maximum continuous is 200 mA, so OK.
PQ] Max= Y2 Isat X Y2 Vg = (05)(794 mA) X (05)(40 V) =794 mW
Maximum is 625 mW so heat sinking is required.

Challenge 3-5 Solution

1. A higher value of R¢ is desirable based on the response to the input (sensitivity).
Lower I is required, therefore less in change of Vv and shorter time spent in
linear region in going from saturation to cutoff.

2. Isar=(Vdd —0.3)/Rc =4.7 V/100 kQ = 0.047 mA
Poi max= "2 IsaT X V2 V4a = (0.5)(0.047 mA) x (0.5)(5 V) =.1175 mW

Load line would go to 0.047 on Y-axis to 5 V (cutoff) on X-axis.

Page 82 - Process Control

Challenge 3-6 Solution

Ig = (V1= 0.7)/(hgg Rg + Rp)
Is = (5 V= 0.7)/((100)(100 Q) + 47 kQ) = 0.075 mA

Ic = Iy X heg = (0.075 mA)(100) = 7.5 mA

ISAT = (Vdd - 03)/RE
Isar=(5V—0.3 V)/100 Q =4.7 mA

Ic > Igar. Saturation current can be reached.

Challenge 3-7 Solution

When S1 is open, the relay is de-energized and contacts K1 are closed. PS8
senses LOW.

When S1 is closed, the relay is energized and contacts K1 open. P8 senses
HIGH.

Vdd
R1
1kQ S1 Figure 3-27
Pg Completed Drawing
K1 / -oeeeeene 115 VAC DO NOt BU’Id

Chapter 4: Sequential Processes and Optical Switches - Page 83

Chapter 4: Sequential Processes and Optical
Switches

Sequential processes are those that follow a defined sequence of actions based on events.
Events involved in a sequential process may be time based, where different actions occur
with defined intervals of time. One example is a clothes dryer, where the sequence of
drying occurs at set intervals. The dryer applies heat and rotates the drum for 50 minutes.
After that time the heat is turned off while the drum continues to turn, providing a cool-
down cycle for 5 minutes. After 5 minutes of cooling, the drum stops rotating and the
buzzer sounds.

The events may also be input based, such as a button being pressed or a sensor detecting
a condition which sets a sequence of actions in motion or allows the sequence to
continue. Consider a clothes washer. What types of events are involved?

e The start button is pressed.

e Water valves open and the tub fills to a defined level based on load size with a
detector sensing water level.
The agitator begins to cycle.

e Agitation stops and the spin and drain cycle begins.

e Andsoon...

Which of the above events are most likely input based, and which are time based? Filling
the machine is an input event since a sensor is used to detect the water level. The
remaining are most likely time based.

There exists a wide variety of input devices and sensors used to detect the absence or
presence of an object or material. Many of these are non-contact in that there is no
physical contact between the sensor and the condition being sensed. Examples include
capacitance, inductance and magnetic. A very popular class of non-contact sensors are
optical; they use light for detection or transmission of data. In many cases, the
wavelength of light is in the infrared (IR) range not visible to the human eye.

Page 84 - Process Control

Some examples of optical sensors include:

e Using a light beam to detect presence of an object or person at a moderate
distance (several feet).

e Using an emitter and detector pair for very close detection, such as motion of
your mouse, the passing of paper in a printer, or the opening of a printer cover.

e Using reflected light to measure the rotation of a shaft.

e Using light to transmit data at a reasonably close range (TV remote) or perhaps a
very long range (fiber-optic telecommunications).

This chapter uses a close-range IR optical sensor to demonstrate operation and signal
conditioning. The sensor is used as part of sequential processes for detection and event
input.

ACTIVITY #1: CONNECTING AND TESTING THE OPTO-REFLECTIVE
SWITCH

The QRB1114 shown in Figure 4-1 is an opto-reflective switch. The actual switching
circuit is a phototransistor. Light hitting the transistor causes a current flow in the base-
emitter, which in turn causes an amplified current flow in the collector-emitter. The
package also contains an infrared LED to use as a light source (emitter). The LED emits
infrared light (IR) not visible to the human eye, and the phototransistor is most sensitive
to this wavelength of light.

In this figure, (E) is the emitter of the phototransistor, and (C) is the collector. (A) stands
for the anode of the IR LED, and (K) marks the cathode.

7 2 _ Vv
d
—5
Figure 4-1
Opto-Reflective
Switch
(A) [(K) (E)\\(C)

IRLED PHOTOTRANISTOR

Chapter 4: Sequential Processes and Optical Switches - Page 85

The IR LED emitter and phototransistor are combined in a single package. The pair are
angled for maximum reflection from a surface at a distance of 0.15 inches (3.8 mm) or
about 1/6 of an inch. This non-contact switch responds to an object passing in front of its
window within the range of detection.

From the study of transistors in Chapter 3, a correct configuration is required for this
switch to be sensed as a digital input.

e The uncommitted collector will require a pull-up.

e The collector resistor must be sized such that the output has transitions between
light and dark conditions above and below the BASIC Stamp threshold voltage.

e The emitter is connected to ground.

e Sufficient base current exists. In this case it would be due to IR LED emissions
reflecting off an object.

The IR LED is rated at a maximum current of 40 mA. Given that the IR LED drops
around 1.5 V, this leaves 3.5 V for calculating the size of the resistor needed to limit
current to the IR LED.

R = V/I = (Vdd — Viep)Iiep = (5.0 V-1.5 V)/40 mA = 87.5 Q.

A 100 Q current-limiting resistor will be used. Since the base current (dependent on IR
radiation) and gain are not quantifiable, determining collector current requires some
experimentation.

Parts Required

(1) Resistor — 100 Q

(2) Resistors — 220 Q

(1) Resistor — 10 kQ

(1) Resistor — 100 kQ

(1) Resistor — 1 MQ

(1) Opto-Reflective Switch — QRB1114
(1) ADCO0831

(1) LED — Red

Page 86 - Process Control

v Construct the circuit shown by the schematic in Figure 4-2 and the wiring
diagram in Figure 4-3. Note that Q; and the IR LED are both inside the
QRB1114. Set aside the 100 k€ and 1 MQ resistors for now.

v Mount the QRB1114 as shown. Bend the device so that it is parallel to the table

surface.
vdd
ADC0831
P13 [D>——Tilics =~ vadfs—e
—2|vin) ek f——<_1 P14
fvne) oof—+———1 P15
4|GND Vref [s}—
V_ss
Vdd Vdd
l Rg Figure 4-2
S 100 Q Opto-Reflective
R, Switch Monitoring
220 Q
P8
(A)
Q,
IR LED, !\ R .
N Phototransistor
_____ S N S S
= = QRB1114
Vss Vss
Vdd
R, LED,
220 Q v:\

PO

<L 2 2 <2

\/

Chapter 4: Sequential Processes and Optical Switches - Page 87

Vdd Vin Vss
Figure 4-3
m::g Opto-Reflective
S [Switch Wiring
o Diagram

oooagy

NOTE: the ACD0831
is installed “upside-
down” with Pin 1 at
the lower right in
this picture.

Run the program DataMonitoring.bs2 from page 46.

Close the Debug Terminal.

Run StampPlot macro sic_pc_opto_plot.spm.

Connect and plot. Nothing will show or update initially on the main plotting
area.

Move your hand just a few inches toward and away from the QRB1114 sensor.

The box labeled VCE should show different readings as you move your hand. If the VCE
readings do not change, something is amiss, and it is time to troubleshoot:

2 2 =2 2 2

Check StampPlot to make sure you are connected, and plotting.

Try to reset or refresh the plot. (From the menus, select Plot — Reset Plot.)
Check your wiring to ensure you have not missed any connections.

Make sure the 100 Q and 10 kQ resistors are in their correct places.

Once the VCE readings update, move on to the next step.

When all is working, move on:

\/
\/

Verify that 10 is selected from the RC(K) drop-down menu in StampPlot.

Using the ruler in Figure 4-4, position the front of the opto-reflective switch at
the 0 CM position as shown in Figure 4-4. For best results, use a book or
another object to raise the level of the ruler to be even with the device.

Page 88 - Process Control

v Use a folded piece of white paper or a white 3 x 5 card for the reflective object.
For maximum reflection, fold it so that the surface facing the detector is as

vertical as possible.

Y Start at 50 mm (5 cm) and move the paper towards the switch. Watch the VCE
reading to see how the voltage drops as the paper moves closer to the switch.

5cm

Figure 4-5 Positioning of Switch and White Paper

1

Figure 4-4
Reflection Ruler

Duplicate for cutting
out can be found in
Appendix A.

5cm

\

This StampPlot macro gives the ability to make a plot of the voltage readings. See Figure
4-6 for an example plot. The individual points on the graph are made by typing a
distance in the mm box, then clicking the Plot button. The current VCE reading will be
plotted vs the distance entered. As points are input in this manner, the macro connects

each point with a straight line.

Making a Plot

Y Start at 50 mm (5 cm) and move the paper towards the switch. Watch the VCE
box for slight drop, maybe 0.1 V, in voltage, or just move 5 mm closer.

v Enter the distance in the ‘mm’ box.
v Click Plot to plot your reading.

Chapter 4: Sequential Processes and Optical Switches - Page 89

v Repeat for at least 10 readings, moving a little closer to the switch each time.
Each time you click Plot, a new point will appear on the graph.

Y Be sure to include the lowest voltage achieved and at least one closer where
voltage begins to rise again. The change in voltage may not be very significant
(lowest voltage around 4.5 V).

Label your plot:

v In the bottom-right corner of the StampPlot screen, it says “Double-Click Plot to
add Text,” with a drop-down text box underneath. (You may have to expand
your window size to see this area.)

v Click in the text box at the bottom right of the StampPlot screen.

V' Highlight and delete anything that is in there, and type in a new phrase: "10 k
Ohm response".

v Now double-click on the plot where you want to place the label, and then your
text will show up on the plot.

V' Save or print your plot.

Did the voltage drop far enough to register as a LOW, that is, does it drop below the
BASIC Stamp TTL threshold of 1.4 V? With some resistor values, it may drop below
1.4 V, but with others it may never drop below 4 V, indicating that there is not sufficient
current to reach saturation. Some choices may be to use a more reflective material, to
increase the power output of the LED (not an option — near 40 mA already), or to
increase the size of Rc. Let’s try some other resistors

2L 2 =2 2 2 =2

Replace R¢ with a 100 k€2 resistor.

Select 100 from the RC(K) drop-down menu.

Repeat the activity, and label the resulting line "100 K Ohm response"
Replace R¢ with a 1 MQ resistor.

Select 1000 from the RC(K) drop-down menu.

Repeat the activity, and label the resulting line "1 M Ohm response”

Using the 1 MQ resistor, the cutoff voltage may not read 5 V. The value of RC is
approaching the input impedance value for the ADC and the BASIC Stamp causing
loading effects. As long as the voltage is above 2.0 V (Vy for the BASIC Stamp) it will
not be an issue.

Page 90 - Process Control

Based on the value that provides the best response, which resistor would you use for a
digital switch? Figure 4-6 shows the results of our test with the 100 k€ value. Note as
the distance is reduced (X-axis), the voltage at Rc decreases (Y-Axis). But after a certain
point, there is insufficient angle for reflection and voltage rises once again.

Figure 4-6 Opto-Reflector Response with 100 kQ RC

SIC Process Control — Opto-Reflective Switch Curve -StampPlot Pro ¥3-Developer Licensed _(8] %]

File Macros Logging Plot Axis Wiew Defined Help

S| E|=| §| 230« = -+
o5 = userstis N0

User Status

5.00

450 ‘ A
\ 00K Ohm|responsg
Y -
/ [am
. / T
250
: - l{ Plot |

800 12.00 16.00 20.00
Distance (mm)

COM Port: u W Log Data ToFile [Log Msgs To File Shift Amount; Double-Click Plot to add Text

File Name: (S SGHRGH Open Data Log Open Msg Log alalimeiot 100K Ohm response -

s
Auto Scale Y Delete Data Log Delete Msg Log s Clear Text on Plot

Challenge 4-1: Determining Distances with Different Materials

v Using the 1 MQ R¢ value, test at least 5 surfaces, including different colors and
surface finishes. At what distance from the opto-reflective switch is a voltage of
1.5 V reached? Complete Table 4-1. Be sure to include the test reflector (white
paper) used in this activity as a reference.

Chapter 4: Sequential Processes and Optical Switches - Page 91

Table 4-1: Surface/Distance Combinations for 1.5 Volts
Surface Material Distance (mm)
White Paper Test Reflector

ACTIVITY #2: BATCH OR SEQUENTIAL PROCESS CONTROL

A batch, or sequential process, uses input signals and timing to perform a straightforward
set of operations. A good example of a sequential process is a traffic light. A sensor
embedded in the road detects a vehicle, and a sequence begins to switch the lights,
controlling the flow of traffic.

In this experiment, a mix process will be simulated using the opto-reflector and
pushbuttons for inputs. The opto-reflective switch will be used to sense level. A more
realistic approach for sensing the level would be an inductive proximity sensor that may
be adjusted to 'ignore' the container's mass, and detect level inside an opaque container.
LEDs will be used to indicate the status of the process.

Page 92 - Process Control

The following is an operational description of the batch process illustrated in Figure 4-7.
A flowchart of the process is in Figure 4-8.

Figure 4-7 Batch Mix System

o
Fill Solenoid .
Red LED Mix
5 Motor Mix Relay
- Yellow LED
] Start
> _ g
— Proximity Sw /1
| Pz
Fill Solenoid — E]E)
Red LED — | P8
PO p1l/
f ﬂ Stop

__/ Drain Solenoid
Green LED

When the Start button is pressed, the vat will begin to fill from both sources.

The proximity switch detects when the vat is full.

Once full, the fill valve will be closed and mixing will occur for a specified time.
When mixing is complete, the drain valve will open and remain so until the
operator presses the Stop button.

Chapter 4: Sequential Processes and Optical Switches - Page 93

Figure 4-8 Batch Sequence Flowchart

Fill

Initialize Energize
O Mixer
. v
True .
Start Not Mix
Pressed 15 Seconds

v

De-Energize
Mixer

2
//

Read
Mix Time

Energize

Energize Fill Drain

[
[

Stop Not
Pressed

True

False

De-Energize
/ Energize Mix / Drain

Parts Required

(1) Resistor — 100 Q

(6) Resistors — 220 Q

(2) Resistors — 1 kQ

(1) Resistor — 10 kQ

(1) Opto-Reflective Switch — QRB1114

Page 94 - Process Control

(1) LED — Green
(1) LED - Yellow
(1) LED — Red
(2) Pushbuttons

v Construct the circuit shown in Figure 4-9 and Figure 4-10. Leave the ADC
circuit on your board for later use.

Figure 4-9 Batch Sequence Circuit - Schematic

Note: The ADC circuit isn’t needed so it isn’t shown, but leave it on the board for future use.
Vdd Vdd

P8

Q
IR :
Phototransistor '

QRB1114
Rs Red LED Vdd
b1 220 Q /;,
Ry Yellow LED
510 220 Q /;, ' o
Rs Green LED
o 220 0 2| o

Chapter 4: Sequential Processes and Optical Switches - Page 95

Vdd Vin Vss
X3
p1sHlN Y@ € 800
P14 | [\ A N O .
P13igT S8 iU ooo || Figure 4-10
P12t e f Al Batch Sequence
Pt B = Wiring Diagram
go‘ \ /&N Cc)\C || 2
== oo
P8 ooodo || = Please note that the
P7 : m . o
B fpriangte = ADC circuit is not
P5 4 ff DD%E\ ° used in this activity
o ®ro |~ but is left on for future
by Y Gr—w 0 @RO use.
pr M| OO c (lulw W
hoogo
PO i) S
¥ 0000 00@o

Example program: BatchMix.bs2

v Enter and run program BatchMix.bs2.

L [Title]
' Process Control - BatchMix.bs2
' Control System for filling, mixing and draining a vat

' {$sTAMP BS2}

' {$PBASIC 2.5}

e [Declarations]
Stop_SW PIN 1
Start SW PIN 2
Opto_Sw PIN 8
Drain PIN 9
Mix PIN 10
Fill PIN 11
Total Mixed VAR Word
Mix_Seconds VAR Byte
X VAR Byte
Vat_Volume CON 25

L s [Initialization]
LOW Drain

LOW Mix

LOW Fill

PB2
Opto-Reflector

Green LED
Yellow LED
Red LED

Total amount of solution mixed
Time to mix

General Counting

Size of Vat

Set initial states

Page 96 - Process Control

PAUSE 500 ' Connection stabilizing time

DEBUG CR, "!RSET",CR, ' Reset StampPlot
"ICLRC",CR, ' Clear any text on plot
"ISPAN 0,500",CR ' Set Y-Axis span

DEBUG "@TEXT 1A,DO, 1A, (Blue), Start Sw",CR, ' Label digital data traces
"@TEXT 1A,D1,1A, (Blue), Proximity Detector",CR,

"@TEXT 1A,D2,1A,

()
()
(Blue), Stop Sw",CR,
()
()
()

"@TEXT 1A,D3,1A, (Blue), Fill",CR,
"@TEXT 1A,D4,1A, (Blue), Mix",CR,
"@TEXT 1A,D5,1A, (Blue), Drain",CR
DEBUG "!0 lblData = Mix Time:\n(Sec)",CR, ' Label input text box area
"10 txtData = 15",CR, ' Set initial value for mix time
"10 txtR = Filling",CR, ' Label other controls

"10 txtY = Mixing",CR,

"10 txtG = Draining",CR,

"10 Statl = Idle",CR,

"10 Stat2 = Total Gallomns:",CR,

"10 txtFileName = Mix Seq",CR ' Label file name for saves
DEBUG "!O Meter = 0,0,500",CR ' Set SP meter - current,min val, max val
DEBUG "!RSET",CR ' Reset after configuring

I ===== [Wedm REUEIRNE | ==

DO
DO UNTIL (Start Sw = 0) ' Wait until start button pressed
GOSUB Display Data
LOOP
DEBUG "!READ (txtData)",CR ' Read time to mix from plot
DEBUGIN DEC Mix Seconds ' Accept data, store in Mix Seconds.
HIGH Fill ' Begin fill

DEBUG "!O Statl = Filling", CR

DO UNTIL (Opto Sw = 0) ' Wait until stop button is pressed
GOSUB Display Data

LOOP

LOW Fill ' Stop fill

HIGH Mix ' Start mixing

FOR X = 1 TO Mix Seconds ' Mix while updating plot

GOSUB Display Data
DEBUG "!0O Statl = Mixing ",
DEC X,
" Seconds", CR
PAUSE 900 ' 100 pause in Display Data added to this

Chapter 4: Sequential Processes and Optical Switches - Page 97

NEXT
LOW Mix ' Stop mixing
HIGH Drain ' Start draining

DEBUG "!0O Statl = Draining",CR

DO UNTIL (Stop_Sw = 0) ' Wait for stop button
GOSUB Display Data
LOOP
LOW Drain ' Stop draining
DEBUG "!0O Statl = Completed",CR
Total Mixed = Total Mixed + Vat Volume 'Accumulate total
DEBUG "!O Stat2 = Total Gallons:", DEC Total Mixed,CR
LOOP
L [Subroutines] --------------- - -
Display Data:
DEBUG "!0 imgR =", BIN Fill, CR, ' Update SP virtual indicators
"10 imgY =", BIN Mix, CR,
"10 imgG =", BIN Drain, CR
DEBUG "!O METER =", DEC Total Mixed,CR ' Update SP Meter
DEBUG IBIN Start Sw, BIN Opto Sw, BIN Stop Sw, ' Plot binary data

BIN Fill, BIN Mix, BIN Drain,CR

DEBUG DEC Total_ Mixed, CR ' Plot analog data
PAUSE 100
RETURN

v Close the Debug Terminal.
v Run StampPlot macro sic_gen_process.spm.

Figure 4-11 is an image of StampPlot configured with this macro. For the next several
activities, this interface will be used. Unlike previous macros that accepted data and
processed it in specialized ways, this macro is more general in use and will be directly
configured and controlled from the BASIC Stamp.

Page 98 - Process Control

Figure 4-11 General Purpose Interface

2 2 <2

< 2 =2

S SIC Process Control -- General Process Control sl-..mlul Pro ¥3-Develoger Licensed IR |
Fle Maras lopging Pt Axis Wiew Defined

JEIQU | ﬁl!]_l— +I—UIJI e | I—] s 242
L |

| compore [IE W Log Data

—
EEF |

IblData
000 '

b imgR - txtR
E imgY - txtY
- | . . | ﬂ imgG - ttG
a0 [Stat1
300 t t 1] ESIalZ

.00 ! | !
o 2400 A8.00 Lratl]
Seconds

Flla Name: Upen Log
Detes Log :

Connect on StampPlot. Notice that the controls on the interface are updated
accordingly with a default mix time of 15 seconds.

Press the Start Button (PB1) to begin the fill operation.

Observe that the filling operation has begun by indication.

After a short time (about 10 seconds), place an object in front of the opto-
reflector to simulate a full vat.

Observe that the mix operation has begun. After 15 seconds, the mixing will
cease and draining will commence.

Remove the object to simulate a less-than-full vat.

Allow a short time for vat to empty before pressing the Stop button (PB2).

The drain operation will be complete, and the accumulated total of gallons mixed
will be updated as indicated by the analog value increasing.

The system is ready for another batch! Change the mix time to 5 on StampPlot,
tab off the box, and repeat the batch sequence.

Note the mix time for the batch.

Chapter 4: Sequential Processes and Optical Switches - Page 99

The three input switches are all Active-LOW, and the three outputs are all Active-HIGH.
In Figure 4-12 the sequence of operations can clearly be seen in the traces for both inputs
and outputs.

Figure 4-12 Fill, Mix and Drain Batch Sequence Plot

SIC Process Control - General Process Control -StampPlot Pro ¥3-Developer Licensed ol -12]x]

File Macros Loggng Plob fds Wiew Defined Help

=|a|g|s| & {8 O« +H—lll =] b [ST
[osor][Userstws [0 oim <]
500.1
Start Swl
450.00 | i
Prnximiﬂ Detector |

0O o Sw Filling

ool I L

300.00 JMix I — =
= [

n00|—] 1 Draining

rain

200,00 [[| Completed

150, | Total Gallons:50

100.00 . -

250 -
- : /’"" '
00 i ’ 1
" 0.00 24.00 48.00 7200 96.00 120.00 ﬂ\“ 500
Seconds i [50 =

COM Port: u M Log Data | Double-Click Plot to add Text

File Name: open Loy i 0 e form X-Marks Spot =
Save Load it
Auto Scale ¥ Delete Log Settings Settings] . 8 Clear Text on Plat

:Bad Data g
11:2714:Bad D P TFO

EEE

PROGRAM DISCUSSION

Unlike the previous StampPlot interfaces used, this one was designed to be more
programmer-friendly for use. Previous macros had code within them to update gauges,
meters, text boxes, and for other needs. This macro is not as intelligent in that the BASIC
Stamp must send the data to update the various objects on the plot screen, but this also
makes the interface more flexible.

Each control has a name. The three virtual indicating lights are named imgR, img¥ and
imgG. The corresponding text boxes for each are txtRr, txtY and txtG. From the
BASIC Stamp a DEBUG instruction can update the controls depending on need. For

Page 100 - Process Control

example, during initialization, the three indicator text boxes are updated to name their
functions, such as:

DEBUG "!0O txtR = Filling", CR

This code will place Filling in the red indicators text box. !0 means to use a plot object
control which is then named and assigned a new value (to is short for 'poBJ- Plot
Object). Examples of this are found throughout the code, updating the two status text
boxes such as:

DEBUG "!0O Statl = Draining", CR

The label for the mix time area, 1blData, is again general purpose and may be set to any
desirable text as in:

DEBUG "!0O lblData = Mix Time:\n(Sec)", CR

The \n is a line feed (new line) symbol to place text on two separate lines.
Data from txtbata will be read by the BASIC Stamp and used in the control process to
define how long the mixing should occur.

DEBUG "!READ (txtData)",CR ' Read time to mix from plot
DEBUGIN DEC Mix Seconds ' Accept data, store in Mix Seconds

The three indicators have two images assigned when created by the macro — a 1's value
image (lit lamp) and a 0's (dark lamp) value image. Both images are simply JPGs in the
StampPlot media\comp directory. In code such as:

DEBUG "!0O imgR =", BIN Fill, CR

The image control is assigned a 1 or 0 value to show the respective image.

Text labels for digital traces are placed on the plot through the use of the StampPlot TEXT
instruction. The general format for placing text is:

@TEXT x-coordinate, y-coordinate, size, color, text

The e indicates the text is to be constant or will survive a reset of the plot. !cLRc is used
to clear constant text and drawings on the plot, like those used in the initialization. Note:
there can be no spaces between the X and Y coordinate parameters!

Chapter 4: Sequential Processes and Optical Switches - Page 101

To label our 6 digital traces we used this line of code:

DEBUG "@TEXT 1A,DO,1A, (Blue), Start Sw", CR

In this example, 1a is an absolute coordinate meaning as the plot shifts the text will
remain static. The same is true for size, 1a again, so the text won't change size when the
plot changes scale. D0 is a y-coordinate relating to the top (or 0) digital trace. D1 is the
second, and so forth. Note that bit positions and D-positions are backwards. The top
trace (DO) is actually the most-significant bit (bit 5 for this plot).

Challenge 4-2: Adding an Emergency Stop

If a problem occurs, such as the mechanical joint leaking or a relay smoking, how long
will it be before the system can be stopped?

v Save BatchMix.bs2 under a new name.

v Add a subroutine and Gosus command for shutdown of the entire system at any
time; continue to plot data and loop until controller reset. Show the shutdown
code and at least one routine call.

ACTIVITY #3: PRODUCTION LOGS

What company could exist without logs and records? Production logs can be used to
determine total output produced and to spot trends. Is the filling or draining of the vat
slowing due to possible obstructions? Did an error occur during a run with a faulty input
device? Did the operator wait until the end-of-shift to hit the Stop button after the mix
was complete?

Parts Required
Same as Activity #2

StampPlot has the capabilities to automatically log data to a file for review or to import
data into another program, such as Microsoft Excel”.

v In the BASIC Stamp Editor, re-run BatchMix.bs2.

Page 102 - Process Control

Close the Debug Terminal.

Run StampPlot macro sic_gen_process.spm.

Click the "Delete Log" button on the interface and affirm the notice.

Check the "Log Data" check box to begin storing incoming data to StampPlot.
Run a batch.

Click the "Open Log" button to view the data saved as shown in Figure 4-13.

!!. Gen_Process_dat.txt - Notepad

File Edit Faormat Wiew Help

11,3003 21:21:09.09,32.280,111001,0
11,3003 21:21:09.38,32.560,111001,0
11/30,03 21:21:09,72,32.5900,110000,25
11,/30/03 21:21:10.02,33.200,111000,25
11,3003 21:21:10.33,33.450,111000,25
11,3003 21:21:10.59,33.780,011000,25

2 2 =2 2 2 =2

11/30,03 21:21:10.52,34.100, 011100, 25 Figure 4-13
11/30,/03 21:21:11.20,34.3590,111100, 25 Mixing Production
11,3003 21:21:11.50,34.680,111100, 25 Data L

11/30/03 21:21:11.80,34.960,111100,25 ata Log

11,/30/05 21:21:12.09,35.280,111100,25
11,/30/03 21:21:12.38,35.560,111100,25
11,3003 21:21:12.66,35.840,111100,25
11,/30,/03 21:21:12.57,36.150,111100,25
113003 21:21:13.25,36.430,111100,25
11.,/30,/03 21:21:13.55,36.730,101100,25
11,/30,/05 21:21:15.86,37.040,101010,25
11,3005 21:21:15.16,38.340,101010,25

The format of the log is:
Date and Time, seconds into the plot, binary data from I/O plotted, analog value(s).
Each bit in the logged binary data represents the following:
Start Sw Proximity Det Stop Sw Filling Mixing Draining
In the line:
11/30/03 21:21:10.92,34.100,011100,25

What is the current status based on the binary data? Keep in mind which I/O are active-
high and which are active-low.

Chapter 4: Sequential Processes and Optical Switches - Page 103

Challenge 4-3: Manual Data Logging

StampPlot also allows manual logging of data using the 1LOGD instruction such as:

DEBUG "!LOGD FILLING",CR

Data from the BASIC Stamp can be incorporated:

DEBUG "!LOGD Run Complete - Gallons Mixed: ", DEC Total Mixed, CR

Finally, data from StampPlot can be incorporated by enclosing object names and macro
values in parentheses:

DEBUG "!LOGD (PTIME) STATUS: (Statl)", CR

...where PTIME is the time into the plot (in seconds), and Stat1l is the name of the status
text box used for current status.

v Save BatchMix.bs2 under a new name.

V' Modify the program to log only major events (begin filling, etc) and the
accumulated gallons mixed at the end of the run.

v Do not enable "Log Data" on the interface or this will also log data to the same
file.

v Click the “Delete Log” button to delete the data file, and confirm your selection.

v Perform a fresh run.

v Click the “Open Log” button to open the data file.

The Date and Time will be suffixed automatically (time stamped) as long as the button on
the toolbar is down or DEBUG "!TSMP OFF", CR is not issued. All this text takes up
some pretty hefty memory in the BASIC Stamp. If you run out of memory while adding
this, delete unnecessary text sent to StampPlot such as labeling the indicators or labeling
the digital plot lines. See the StampPlot help files under Summaries — Math Summaries
for a list of intrinsic StampPlot values that could be used.

Page 104 - Process Control

ACTIVITY #4: BOX CONVEYOR BELT — COUNTING AND EDGE
DETECTION

Parts Required

Same circuit as Activity #2

This conveyor belt simulation activity uses the same BASIC Stamp circuit and StampPlot
macro as the previous activities, but addresses different issues by using a conveyor
system to count and divert boxes to one of two loading bays. The following is the feature
set of this control system, depicted in Figure 4-14:

e Detection and counting of boxes to be loaded onto trucks. The yellow LED
indicates detection.

e Operation of a gate to divert the boxes to one of two truck-loading bays signified
by a green LED. One full truckload is 6 boxes.

e Operation of the conveyor belt with the use of two pushbutton switches — Start
and Stop. The energized conveyor is signified with the red LED.

Figure 4-14 Conveyor Belt System

Sltart

N g

/AN /
P2

P10
P8 P11e
P9

(4

P1]

EDGE DETECTION

Before beginning any programming, let us first discuss issues involved in counting with
digital inputs. One of the functions of the system is to count the boxes that pass. The
digital input is LOW when a box is detected with the opto-reflective switch. Should the

Chapter 4: Sequential Processes and Optical Switches - Page 105
program count every sample if a low level is sensed, as depicted by the partial flowchart
in Figure 4-15 (a)?

Figure 4-15 Detection and Counting Algorithms

a. b.

True True

Box Box P
Detected Detey <
Add 1 False True
To Count Box
Detected
Add 1
To Count
True
Box P
Detected -
v
C. False Set Flag
Box Not True Add 1
ox No
Detected To Count —» ClearFlag

ly

"Sample Time" is how frequently a program reads a value. If the sample time were
100 ms and the box was present for 2 seconds, how many counts would have occurred?
The algorithm would have counted 20 boxes! So the count cannot be based on whether
the object is detected or not. The count needs to occur only once: either at the first
detection of a box or when the box passes. A count needs to occur on the transition from
HIGH to LOW or LOW to HIGH. In digital terms, this is known as "Edge Triggering".

Page 106 - Process Control

Consider the partial flowchart in Figure 4-15 (b). As long as a box is not detected, the
decision will be false and no count will occur. When a sample detects a box, the flow
will loop and wait until the box is no longer detected (waiting for the transition) before
counting. Do you see any problems in the algorithm? Once the flow enters the waiting
loop, no other actions can take place, such as sensing if the STOP button is pressed in the
event of an emergency. If someone's sleeve gets caught, they may have lost a limb
during the time it takes the box to pass! The batch mix program in Activity 4-2 used
subroutine calls in order to continually plot data. The call could also be used to check the
status of the stop button. However, if our program has many routines that need to be
continuously performed, that may not be the best solution.

(R Certain processors, such as the BS2p, have polling and/or interrupt capabilities to branch
\&/ automatically to a location based on conditions, but the BS2 does not.

Through the use of a flag a much more elegant and efficient means is demonstrated in
Figure 4-15 (c). A flag is simply used to indicate a condition. One example is raising the
flag on a mailbox to indicate a need to pick-up outgoing mail. In programming, a flag is
typically a bit variable, set HIGH to indicate the occurrence of a condition.

In Figure 4-15 (c):

e Once a box is detected (TRUE), the flag is set.
When the box has passed and is not present (FALSE), the flag will be checked.

e [f the flag is set, it indicates that a box HAD been present, so the program will
add one as passing. - Don't forget to reset the flag for the next box!

e When the box is not present and the flag is not set, program execution will
continue without counting a box. This allows the remaining code in the program
to continue execution by flagging an event instead of waiting for an event.

In the following code, a nested IF...THEN could be used to check the condition of the
box passing and then the flag to see if a count needs to occur:

IF (Opto_Sw = 1) THEN ' True if no box
IF (Edge_Flag = 1) THEN ' True 1f Flag set
Box_ Count = Box_Count + 1
Edge Flag = 0
ENDIF

ENDIF

Chapter 4: Sequential Processes and Optical Switches - Page 107

The count would only occur when both conditions are true. oOpto_sw needs to