Mono class D audio power amplifier with dedicated analog switch

Features

－Wide operating voltage range from $\mathrm{V}_{\mathrm{CC}}=2.4 \mathrm{~V}$ to 4.3 V
■ Audio amplifier standby mode active low
■ Output power：1．6 W at 4．2 V or 0．75 W at 3．0 V into 4Ω with 1% THD＋N maximum
■ Output power： 0.95 W at 4.2 V or 0.45 W at 3.0 V into 8Ω with 1% THD＋N maximum
－Adjustable gain via external resistors
－Low current consumption 2 mA at 3 V
－Efficiency：88\％typical
■ Signal－to－noise ratio： 85 dB typical
■ PSRR： 63 dB typical at 217 Hz with 6 dB gain
■ PWM base frequency： 250 kHz
－Low pop and click noise
－Dual Power SPST with separated sonircl
■ Ultra－high off－isolation on ana＇o r switen： -80 dB typical from $20 \mathrm{~Hz} \approx っ$ ？ kHz

Applications

－Cellular te＇erinos
－PDAs
－ivniこちook PCs

Description

The TS4961T is a smart combination of one mono class D audio power amplifier and a high－speed CMOS low－voltage dual power analog SPST．

One of the key functions of this device is the switch mode of the various audio signals coming from the codec or baseband through the loudspeaker．It can drive up to 1.6 W into a 4Ω load and 0.95 W into an 8Ω load．It achieves an outstanding efficiency of up to 88% typical．

The audio amplifying gain of the device can be controlled via two external gain－setting resistors．It is designed to operate from 2.4 to 4.3 V ，making this device ideal for portable applications．

Contents

1 Absolute maximum ratings and operating conditions 3
2 Electrical characteristics 6
2.1 Audio amplifier section 6
2.2 Analog switch section 16
3 Electrical characteristics curves 19
3.1 Audio amplifier section 19
3.2 Analog switch section 28
4 Application component information 35
4.1 Common mode feedback loop limitations 36
4.2 Low frequency response 37
4.3 Decoupling of the circuit 37
4.4 Wake-up time (t_{wu}) 37
4.5 Shutdown time ($\mathrm{t}_{\text {STEV }}$) 38
4.6 Consumption in ständiby mode 38
4.7 Single-endert input configuration 38
4.8 Outpit fil ar considerations 40
4.9 Excmples with summed inputs 41
4.9.1 Example 1: dual differential inputs 41
4.9.2 Example 2: one differential input plus one single-ended input 42
4.10 Using the audio amplifier and switch on the same speaker 43
5 Package information 45
6 Ordering information 48
7 Revision history 48

1

Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CCA }}$ \& $\mathrm{V}_{\text {CCS }}$	Supply voltage ${ }^{(1)(2)}$	GND to 5.5	V
$V_{\text {in }}$	Input voltage	GND-0.3V / $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	V
$\mathrm{T}_{\text {oper }}$	Operating free-air temperature range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{j}	Maximum junction temperature	150	\bigcirc
$\mathrm{R}_{\text {thja }}$	Thermal resistance junction to ambient ${ }^{(3)}$	39	CiN
$\mathrm{R}_{\text {thjc }}$	Thermal resistance junction to case	5	C/W
P_{d}	Power dissipation	Internally limi $\mathbf{e c}^{\prime}$, (1)	
ESD	Human body model ${ }^{(5)}$	< 2	kV
	Machine model ${ }^{(6)}$	200200100200	V
Latch-up	Latch-up immunity of the Class D Amplifier (All Pins) Latch-up immunity of the Analog Switch (Supply Pins) Latch-up immunity of the Analog Switch Supply (I/C, D.ns)		mA
$V_{\text {STBY }}$	Standby pin voltage maximum voltage	GND-0.3V / $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	V
	Lead temperature (soldering, 10 sec)	260	${ }^{\circ} \mathrm{C}$

1. Caution: this device is not protected in the ever.ı of a bnormal operating conditions, such as short-circuiting between any one output pin and ground, between any ant ourp't pin and $V_{C C}$, and between individual output pins.
2. All voltage values are measured with $r \in s p e c+$ to the ground pin.
3. When mounted on a 4-layers PC?
4. Exceeding the power derati ig \sim^{2}.es during a long period provokes abnormal operating conditions.
5. Human body modei a 0 pl capacitor is charged to the specified voltage, then discharged through a $1.5 \mathrm{k} \Omega$ resistor between two pins of i ie device. This is done for all couples of connected pin combinations while the other pins are floating.
6. Machine mc a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device wit.l $n c$ external series resistor (internal resistor $<5 \Omega$). This is done for all couples of connected pin combinations while to 0 oth rr pins are floating.

Tal!é. Operating conditions for audio amplifier section

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CCA}}$	Supply voltage $^{(1)}$	2.4 to 4.3	V
$\mathrm{~V}_{\text {IC }}$	Common mode input voltage range $^{(2)}$	0.5 to $\mathrm{V}_{\mathrm{CC}}-0.8$	V
$\mathrm{~V}_{\text {STBY }}$	Standby voltage input: Class D amplifier ON Class D amplifier OFF		
R_{L}	Load resistor	$1.4 \leq \mathrm{V}_{\text {STBY }} \leq \mathrm{V}_{\mathrm{CC}}$ $\mathrm{GND} \leq \mathrm{V}_{\mathrm{STBY}} \leq 0.4$	V

1. For V_{CC} from 2.4 V to 2.5 V , the operating temperature range is reduced to $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{amb}} \leq 70^{\circ} \mathrm{C}$.
2. For V_{CC} from 2.4 V to 2.5 V , the common mode input range must be set at $\mathrm{V}_{\mathrm{CC}} / 2$.
3. Without any signal on $V_{\text {STBY }}$, the device is in standby.
4. Minimum current consumption is obtained when $\mathrm{V}_{\mathrm{STBY}}=\mathrm{GND}$.

Table 3. Operating conditions for analog switch section

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	2.4 to 4.3	V
$\mathrm{~V}_{\text {in }}$	Input voltage	0 to V_{CC}	V
$\mathrm{V}_{\text {IC }}$	Control input voltage	0 to 4.3	V
$\mathrm{~V}_{\mathrm{O}}$	Output voltage	0 to V_{CC}	V
$\mathrm{dt} / \mathrm{dv}$	Input rise and fall time control input	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	0 to 20
		$\mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 4.3 V	0 to 10
nyy	ns / V		

Table 4. Audio amplifier standby mode settings

/STDBY	Functional description
Low	OFF
High	Device is in shut-down mode
Device is in operating। ode	

Table 5. Analog switch settings truth table

SLn	Switch $N^{\circ} 1$	Switch N° 2
High	ON	ON
Low	D1 is connected tr T1	D2 is connected to T2
OFF		
High impeciance from D1 to T1	OFF	

Table 6. Pin description

Name	Pin number	Function
VCCA	6	Class D audio amplifier power supply voltage input pin
VCCS	2	Analog switch power supply voltage input pin
/STDBY	12	Standby input pin (active low) to disable the audio amplifier
T1	1	Independent output audio channel 1
D2	3	Common input audio channel 2
SL2	4	Select input pin for D2 to T2 (active high)
OUT+	5	Positive differential audio output
GNDA	7	Audio amplifier input ground
OUT-	8	Negative differential audio output
T2	9	Independent output audio channel 2
GNDS	10	Analog switch input ground
SL1	11	Select input pin for D1 to T1 (active ingh)
D1	13	Common input audio chanr.al:
NC	14	No internal connection
IN-	15	Audio negative (iffrcuitial input
$\mathrm{IN}+$	16	Audio p ssitio e むifferential input
E-Pad	-	Exposed pad (should be connected to GND)

2 Electrical characteristics

2.1 Audio amplifier section

Table 7. Electrical characteristics at $\mathrm{V}_{\mathrm{Cc}}=+4.3 \mathrm{~V}$ with $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{icm}}=2.1 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) ${ }^{(1)}$

Symbol	Parameter	Min.	Typ.	Max.	Unit
I_{CC}	Supply current No input signal, no load		2.1	3	mA
$\mathrm{I}_{\text {StBy }}$	Standby current ${ }^{(2)}$ No input signal, $\mathrm{V}_{\text {STBY }}=$ GND		10	1000	\cdots
$\mathrm{V}_{\text {o }}$	Output offset voltage No input signal, $\mathrm{R}_{\mathrm{L}}=8 \Omega$		3	25	mV
$\mathrm{P}_{\text {out }}$	Output power, $\mathrm{G}=6 \mathrm{~dB}$ $\begin{aligned} & \text { THD }=1 \% \operatorname{Max}, f=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { THD }=10 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { THD }=1 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \text { THD }=10 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$		$\begin{gathered} 1.5 \\ 1.95 \\ 0.9 \\ 1.1 \end{gathered}$		W
THD + N	Total harmonic distortion + noise $\begin{aligned} & P_{\text {out }}=600 \mathrm{~mW}_{\text {RMS }}, G=6 \mathrm{~d}^{\prime}, \mathrm{c}^{\prime} \cdot \mathrm{Hz}<\mathrm{f}<20 \mathrm{kHz} \\ & R_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{k} \cdot-\mathrm{zz} \\ & \mathrm{P}_{\text {out }}=700 \mathrm{~mW}_{\text {RMS }}, G=0 \mathrm{~dB}, \mathrm{f}=1 \mathrm{kHz} \\ & R_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H} \quad \mathrm{bW}<30 \mathrm{kHz} \end{aligned}$		$\begin{gathered} 2 \\ 0.35 \end{gathered}$		\%
Efficiency	$\begin{aligned} & \text { Efficiency } \\ & \mathrm{P}_{\mathrm{out}^{+}}=1 . \iota^{\prime} ; \mathrm{V}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=4 \Omega+\geq 15 \mu \mathrm{H} \\ & \mathrm{D}_{\mathrm{L}^{+}}=0.9 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=8 \Omega+\geq 15 \mu \mathrm{H} \end{aligned}$		$\begin{aligned} & 78 \\ & 88 \end{aligned}$		\%
PSR?	Power supply rejection ratio with inputs grounded ${ }^{(3)}$ $f=217 \mathrm{~Hz}, R_{L}=8 \Omega, G=6 \mathrm{~dB}, V_{\text {ripple }}=200 \mathrm{mV}_{p p}$		63		dB
OMRR	Common mode rejection ratio $f=217 \mathrm{~Hz}, R_{L}=8 \Omega, G=6 d B, \Delta V i c=200 m V_{p p}$		57		dB
Gain	Gain value ($\mathrm{R}_{\text {in }}$ in $\mathrm{k} \Omega$)	$\frac{273 k \Omega}{R_{i n}}$	$\frac{300 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	$\frac{327 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	V/V
$\mathrm{R}_{\text {STBY }}$	Internal resistance from standby to GND	273	300	327	$\mathrm{k} \Omega$
$\mathrm{F}_{\text {PWM }}$	Pulse width modulator base frequency		280		kHz
SNR	Signal to noise ratio (A-weighting) $\mathrm{P}_{\text {out }}=0.8 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		85		dB
twu	Wake-up time		5	10	ms
$\mathrm{t}_{\text {STBY }}$	Standby time		5	10	ms

Table 7. Electrical characteristics at $\mathrm{V}_{\mathrm{Cc}}=+4.3 \mathrm{~V}$ with $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{icm}}=2.1 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) ${ }^{(1)}$ (continued)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{N}	Output voltage noise $f=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{G}=6 \mathrm{~dB}$ Unweighted $R_{L}=4 \Omega$ A-weighted $R_{L}=4 \Omega$ Unweighted $R_{L}=8 \Omega$ A-weighted $R_{L}=8 \Omega$ Unweighted $R_{L}=4 \Omega+15 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+15 \mu \mathrm{H}$ Unweighted $R_{L}=4 \Omega+30 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+30 \mu \mathrm{H}$ Unweighted $R_{L}=8 \Omega+30 \mu H$ A-weighted $\mathrm{R}_{\mathrm{L}}=8 \Omega+30 \mu \mathrm{H}$ Unweighted $R_{L}=4 \Omega+$ Filter A-weighted $R_{L}=4 \Omega+$ Filter Unweighted $R_{L}=4 \Omega+$ Filter A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+$ Filter		85 60 86 62 83 60 88 64 78 57 37 65 82 59		$\mu v^{\prime} \text { змs }$

1. All electrical values are guaranteed with correlation rivasur mments at 2.5 V and 5 V .
2. Standby mode is active when $V_{\text {STBY }}$ is tied $+=G^{*}{ }^{*} I D$.
3. Dynamic measurements $-20^{*} \log \left(\mathrm{rms}\left(\mathrm{V}_{\text {out }} / \mathrm{rms}, \mathrm{V}_{\text {ripple }}\right)\right) . \mathrm{V}_{\text {ripple }}$ is the superimposed sinusoidal signal to $V_{C C}$ at $f=217 \mathrm{~Hz}$.

Table 8. Electrical characteristics at $\mathrm{V}_{\mathrm{Cc}}=+3.6 \mathrm{~V}$ with $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{icm}}=1.8 \mathrm{~V}$, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) ${ }^{(1)}$

Symbol	Parameter	Min.	Typ.	Max.	Unit
I_{CC}	Supply current No input signal, no load		2	2.8	mA
$\mathrm{I}_{\text {StBy }}$	Standby current ${ }^{(2)}$ No input signal, $\mathrm{V}_{\text {STBY }}=$ GND		10	1000	nA
$\mathrm{V}_{\text {o }}$	Output offset voltage No input signal, $\mathrm{R}_{\mathrm{L}}=8 \Omega$		3	25	mV
$\mathrm{P}_{\text {out }}$	Output power, G=6dB $\begin{aligned} & \text { THD }=1 \% \operatorname{Max}, f=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { THD }=10 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { THD }=1 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, R_{\mathrm{L}}=8 \Omega \\ & \text { THD }=10 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$		$\begin{gathered} 1.1 \\ 1.4 \\ 0.7 \\ 0.85 \end{gathered}$		W
THD + N	$\begin{aligned} & \text { Total harmonic distortion }+ \text { noise } \\ & P_{\text {out }}=450 \mathrm{~mW}_{\text {RMS }}, G=6 \mathrm{~dB}, 20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \\ & \mathrm{P}_{\text {out }}=500 \mathrm{~mW}_{\text {RMS }}, G=6 \mathrm{~dB}, \mathrm{f}=1 \mathrm{kHz} \\ & R_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \end{aligned}$		2 0.1		\%
Efficiency	Efficiency $\begin{aligned} & \mathrm{P}_{\text {out }}=1 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=4 \Omega+\geq 15 \mu \mathrm{~L} \\ & \mathrm{P}_{\text {out }}=0.65 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=8 \Omega+\geq 5 \mu \mathrm{H} \end{aligned}$		$\begin{aligned} & 78 \\ & 88 \end{aligned}$		\%
PSRR	Power supply rejection ratio with inputs grounded ${ }^{(3)}$ $f=217 \mathrm{~Hz}, R_{L}=¿ \Omega, G=6 \mathrm{~dB}, V_{\text {ripple }}=200 \mathrm{mV}_{\text {pp }}$		62		dB
CMRR	Common incide rejection ratio 		56		dB
Ga: 1	Gain value ($\mathrm{R}_{\text {in }}$ in $\mathrm{k} \Omega$)	$\frac{273 k \Omega}{R_{i n}}$	$\frac{300 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	$\frac{327 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	V/V
${ }^{\text {? }}$ S BY	Internal resistance from standby to GND	273	300	327	$\mathrm{k} \Omega$
$\mathrm{F}_{\text {PWM }}$	Pulse width modulator base frequency		280		kHz
SNR	Signal to noise ratio (A-weighting) $P_{\text {out }}=0.6 \mathrm{~W}, R_{\mathrm{L}}=8 \Omega$		83		dB
$t_{\text {Wu }}$	Wake-up time		5	10	ms
$\mathrm{t}_{\text {STBY }}$	Standby time		5	10	ms

Table 8. Electrical characteristics at $\mathrm{V}_{\mathrm{Cc}}=+3.6 \mathrm{~V}$ with $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{icm}}=1.8 \mathrm{~V}$, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) ${ }^{(1)}$ (continued)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{N}	Output voltage noise $\mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{G}=6 \mathrm{~dB}$ Unweighted $R_{L}=4 \Omega$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega$ Unweighted $R_{L}=8 \Omega$ A-weighted $\mathrm{R}_{\mathrm{L}}=8 \Omega$ Unweighted $R_{L}=4 \Omega+15 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+15 \mu \mathrm{H}$ Unweighted $R_{L}=4 \Omega+30 \mu H$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+30 \mu \mathrm{H}$ Unweighted $R_{L}=8 \Omega+30 \mu H$ A-weighted $\mathrm{R}_{\mathrm{L}}=8 \Omega+30 \mu \mathrm{H}$ Unweighted $R_{L}=4 \Omega+$ Filter A-weighted $R_{L}=4 \Omega+$ Filter Unweighted $R_{L}=4 \Omega+$ Filter A-weighted $R_{L}=4 \Omega+$ Filter	ก	$\begin{aligned} & 83 \\ & 57 \\ & 83 \\ & 61 \\ & 81 \\ & 58 \\ & 87 \\ & 62 \\ & 77 \\ & 6 \\ & 35 \\ & 63 \\ & 80 \\ & 57 \end{aligned}$		μv^{\prime} вмs

1. All electrical values are guaranteed with correlation riocsur mments at 2.5 V and 5 V .
2. Standby mode is activated when $V_{\text {STBY }}$ is tind ti $G I{ }^{\prime} L$.
3. Dynamic measurements $-20^{*} \log \left(\mathrm{rms}\left(\mathrm{V}_{\text {out }} / \mathrm{rms}, \mathrm{V}_{\text {ripple }}\right)\right) . \mathrm{V}_{\text {ripple }}$ is the superimposed sinusoidal signal to $V_{C C}$ at $f=217 \mathrm{~Hz}$.

Table 9. Electrical characteristics at $\mathrm{V}_{\mathrm{CC}}=+3.0 \mathrm{~V}$ with $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{icm}}=1.5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) ${ }^{(1)}$

Symbol	Parameter	Min.	Typ.	Max.	Unit
I_{CC}	Supply current No input signal, no load		1.9	2.7	mA
$\mathrm{I}_{\text {StBy }}$	Standby current ${ }^{(2)}$ No input signal, $\mathrm{V}_{\text {STBY }}=\mathrm{GND}$		10	1000	nA
$\mathrm{V}_{\text {oo }}$	Output offset voltage No input signal, $\mathrm{R}_{\mathrm{L}}=8 \Omega$		3	25	mV
$\mathrm{P}_{\text {out }}$	Output power, $\mathrm{G}=6 \mathrm{~dB}$ $\begin{aligned} & \text { THD }=1 \% \operatorname{Max}, f=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { THD }=10 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { THD }=1 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \text { THD }=10 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$		$\begin{gathered} 0.7 \\ 1 \\ 0.5 \\ 0 . \end{gathered}$		
THD + N	$\begin{aligned} & \text { Total harmonic distortion }+ \text { noise } \\ & P_{\text {out }}=300 \mathrm{~mW}_{\text {RMS }}, G=6 \mathrm{~dB}, 20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \\ & \mathrm{P}_{\text {out }}=350 \mathrm{~mW}_{\text {RMS }}, \mathrm{G}=6 \mathrm{~dB}, \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \end{aligned}$		2 0.1		\%
Efficiency	Efficiency $\begin{aligned} & \mathrm{P}_{\text {out }}=0.7 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=4 \Omega+\geq 15 \mu^{\prime} \mathrm{h} \\ & \mathrm{P}_{\text {out }}=0.45 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=8 \Omega+\geq 15^{2} \mathrm{H} \end{aligned}$		$\begin{aligned} & 78 \\ & 88 \end{aligned}$		\%
PSRR	Power supply rejection ratio with inputs grounded ${ }^{(3)}$ $f=217 \mathrm{~Hz}, R_{L}=¿ \Omega G=6 \mathrm{~dB}, V_{\text {ripple }}=200 \mathrm{mV} \mathrm{ppp}$		60		dB
CMRR	Common incde rejection ratio 		54		dB
Ga: 1	Gain value ($\mathrm{R}_{\text {in }}$ in $\mathrm{k} \Omega$)	$\frac{273 k \Omega}{R_{i n}}$	$\frac{300 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	$\frac{327 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	V/V
${ }^{2} \cdot{ }_{\text {S }} \mathrm{BY}$	Internal resistance from standby to GND	273	300	327	$\mathrm{k} \Omega$
$\mathrm{F}_{\text {PWM }}$	Pulse width modulator base frequency		280		kHz
SNR	Signal to noise ratio (A-weighting) $P_{\text {out }}=0.4 \mathrm{~W}, R_{\mathrm{L}}=8 \Omega$		82		dB
twu	Wake-up time		5	10	ms
$\mathrm{t}_{\text {StBy }}$	Standby time		5	10	ms

Table 9. Electrical characteristics at $\mathrm{V}_{\mathrm{Cc}}=+3.0 \mathrm{~V}$ with $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{icm}}=1.5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) ${ }^{(1)}$ (continued)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{N}	Output voltage noise $\mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{G}=6 \mathrm{~dB}$ Unweighted $R_{L}=4 \Omega$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega$ Unweighted $\mathrm{R}_{\mathrm{L}}=8 \Omega$ A-weighted $\mathrm{R}_{\mathrm{L}}=8 \Omega$ Unweighted $R_{L}=4 \Omega+15 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+15 \mu \mathrm{H}$ Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+30 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+30 \mu \mathrm{H}$ Unweighted $R_{L}=8 \Omega+30 \mu H$ A-weighted $\mathrm{R}_{\mathrm{L}}=8 \Omega+30 \mu \mathrm{H}$ Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+$ Filter A-weighted $R_{L}=4 \Omega+$ Filter Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+$ Filter A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+$ Filter	-	$\begin{aligned} & 83 \\ & 57 \\ & 83 \\ & 61 \\ & 81 \\ & 58 \\ & 87 \\ & 62 \\ & 77 \\ & 36 \\ & 85 \\ & 63 \\ & 80 \\ & 57 \end{aligned}$		$\mu \imath^{\prime}{ }_{\text {g }}$

1. All electrical values are guaranteed with correlation reasurements at 2.5 V and 5 V .
2. Standby mode is active when $V_{\text {STBY }}$ is tied $+=G^{*}{ }^{*} I D$.
3. Dynamic measurements $-20^{*} \log \left(\mathrm{rms}\left(\mathrm{V}_{\text {out }} / \mathrm{rms}, \mathrm{V}_{\text {ripple }}\right)\right) . \mathrm{V}_{\text {ripple }}$ is the superimposed sinusoidal signal to $V_{C C}$ at $f=217 \mathrm{~Hz}$.

Table 10. Electrical characteristics at $\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}$ with $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{icm}}=1.25 \mathrm{~V}$, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
I_{CC}	Supply current No input signal, no load		1.7	2.4	mA
$\mathrm{I}_{\text {StBy }}$	Standby current ${ }^{(1)}$ No input signal, $\mathrm{V}_{\text {STBY }}=\mathrm{GND}$		10	1000	nA
$\mathrm{V}_{\text {o }}$	Output offset voltage No input signal, $\mathrm{R}_{\mathrm{L}}=8 \Omega$		3	25	mV
$\mathrm{P}_{\text {out }}$	Output power, $\mathrm{G}=6 \mathrm{~dB}$ $\begin{aligned} & \text { THD }=1 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { THD }=10 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { THD }=1 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, R_{\mathrm{L}}=8 \Omega \\ & \text { THD }=10 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$		$\begin{gathered} 0.5 \\ 0.65 \\ 0.33 \\ 0.41 \end{gathered}$		
THD + N	$\begin{aligned} & \text { Total harmonic distortion }+ \text { noise } \\ & \mathrm{P}_{\text {out }}=180 \mathrm{~mW}_{\text {RMS }}, \mathrm{G}=6 \mathrm{~dB}, 20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \\ & \mathrm{P}_{\text {out }}=200 \mathrm{~mW}_{\text {RMS }}, \mathrm{G}=6 \mathrm{~dB}, \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \end{aligned}$		$\begin{gathered} 1 \\ 0.05 \end{gathered}$		\%
Efficiency	Efficiency $\begin{aligned} & \mathrm{P}_{\text {out }}=0.47 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=4 \Omega+\geq \dot{\prime \prime} \\ & \mathrm{P}_{\text {out }}=0.3 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=8 \Omega+ \pm 15_{\mu} \mathrm{H} \end{aligned}$		$\begin{aligned} & 78 \\ & 88 \end{aligned}$		\%
PSRR	Power supply rejection ratio with inputs grounded ${ }^{(2)}$ $f=217 \mathrm{~Hz}, R_{L}=\varepsilon \Omega, G=6 \mathrm{~dB}, \quad V_{\text {ripple }}=200 \mathrm{mV}_{p p}$		60		dB
CMRR	Common inc de rejection ratio $f=2^{1} 1^{1} 2, r_{L}=8 \Omega, G=6 d B, \Delta V_{i c}=200 m V_{p p}$		54		dB
Ga: 1	Gain value ($\mathrm{R}_{\text {in }}$ in $\mathrm{k} \Omega$)	$\frac{273 k \Omega}{R_{i n}}$	$\frac{300 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	$\frac{327 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	V/V
${ }^{2} \mathrm{~S}$ BY	Internal resistance from standby to GND	273	300	327	$\mathrm{k} \Omega$
$\mathrm{F}_{\text {PWM }}$	Pulse width modulator base frequency		280		kHz
SNR	Signal to noise ratio (A-weighting) $\mathrm{P}_{\text {out }}=0.3 \mathrm{~W}, \mathrm{R}_{\mathrm{L}}=8 \Omega$		80		dB
$t_{\text {wu }}$	Wake-up time		5	10	ms
$\mathrm{t}_{\text {STBY }}$	Standby time		5	10	ms

Table 10. Electrical characteristics at $\mathrm{V}_{\mathrm{cc}}=+2.5 \mathrm{~V}$ with $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{icm}}=1.25 \mathrm{~V}$, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) (continued)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{N}	Output voltage noise $\mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{G}=6 \mathrm{~dB}$ Unweighted $R_{L}=4 \Omega$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega$ Unweighted $R_{L}=8 \Omega$ A-weighted $\mathrm{R}_{\mathrm{L}}=8 \Omega$ Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+15 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+15 \mu \mathrm{H}$ Unweighted $R_{L}=4 \Omega+30 \mu H$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+30 \mu \mathrm{H}$ Unweighted $R_{L}=8 \Omega+30 \mu H$ A-weighted $\mathrm{R}_{\mathrm{L}}=8 \Omega+30 \mu \mathrm{H}$ Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+$ Filter A-weighted $R_{L}=4 \Omega+$ Filter Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+$ Filter A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+$ Filter	ก	85 60 86 62 76 56 82 60 67 53 18 57 74 54		$\mu v^{\prime} \text { змs }$

1. Standby mode is active when $\mathrm{V}_{\text {STBY }}$ is tied to GND.
2. Dynamic measurements $-20^{*} \log \left(\mathrm{rms}\left(\mathrm{V}_{\text {out }}\right) / \mathrm{rms}\right.$; $/$ rip lei/. $\mathrm{V}_{\text {ripple }}$ is the superimposed sinusoidal signal to $V_{C C}$ at $f=217 \mathrm{~Hz}$.

Table 11. Electrical characteristics at $\mathrm{V}_{\mathrm{Cc}}+2.4 \mathrm{~V}$ with $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{icm}}=1.2 \mathrm{~V}$,

Symbol	Parameter	Min.	Typ.	Max.	Unit
I_{CC}	Supply current No input signal, no load		1.7		mA
$I_{\text {StBy }}$	Standby current ${ }^{(1)}$ No input signal, $\mathrm{V}_{\text {STBY }}=$ GND		10		nA
$\mathrm{V}_{\text {o }}$	Output offset voltage No input signal, $\mathrm{R}_{\mathrm{L}}=8 \Omega$		3		mV
$\mathrm{P}_{\text {out }}$	Output power, $\mathrm{G}=6 \mathrm{~dB}$ $\begin{aligned} & \text { THD }=1 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { THD }=10 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=4 \Omega \\ & \text { THD }=1 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, R_{\mathrm{L}}=8 \Omega \\ & \text { THD }=10 \% \operatorname{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$		$\begin{gathered} 0.42 \\ 0.61 \\ 0.3 \\ 0.39 \end{gathered}$		
THD + N	Total harmonic distortion + noise $\begin{aligned} & \mathrm{P}_{\text {out }}=150 \mathrm{~mW}_{\text {RMS }}, \mathrm{G}=6 \mathrm{~dB}, 20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz} \\ & \mathrm{R}_{\mathrm{L}}=8 \Omega+15 \mu \mathrm{H}, \mathrm{BW}<30 \mathrm{kHz} \end{aligned}$				\%
Efficiency	Efficiency $\begin{aligned} & \mathrm{P}_{\text {out }}=0.38 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=4 \Omega+\geq 15 \mu \mathrm{H} \\ & \mathrm{P}_{\text {out }}=0.25 \mathrm{~W}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=8 \Omega+\geq 15 \mu^{\prime} \mathrm{t} \end{aligned}$		$\begin{aligned} & 77 \\ & 86 \end{aligned}$		\%
CMRR	Common mode rejection ratio $f=217 \mathrm{~Hz}, R_{L}=8 \Omega, \quad G=6 d d^{\prime}, \quad \cup_{i c}=200 m V_{p p}$		54		dB
Gain	Gain value ($\mathrm{R}_{\text {in }}$ ir $\kappa 0$)	$\overline{\frac{273 k \Omega}{R_{i n}}}$	$\frac{300 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	$\frac{327 \mathrm{k} \Omega}{R_{\mathrm{in}}}$	V/V
$\mathrm{R}_{\text {STBY }}$	Internal ro.,istaıce from standby to GND	273	300	327	$\mathrm{k} \Omega$
$\mathrm{F}_{\text {PWM }}$	Pul: e v/üh modulator base frequency		280		kHz
SN?	心innal to noise ratio (A-weighting) $P_{\text {out }}=0.25 \mathrm{~W}, R_{L}=8 \Omega$		80		dB
${ }^{+}$NU	Wake-up time		5		ms
$\mathrm{t}_{\text {STBY }}$	Standby time		5		ms

Table 11. Electrical characteristics at $\mathrm{V}_{\mathrm{Cc}}+2.4 \mathrm{~V}$ with $\mathrm{GND}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{icm}}=1.2 \mathrm{~V}$, $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified) (continued)

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{N}	Output voltage noise $\mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz}, \mathrm{G}=6 \mathrm{~dB}$ Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega$ Unweighted $R_{L}=8 \Omega$ A-weighted $R_{L}=8 \Omega$ Unweighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+15 \mu \mathrm{H}$ A-weighted $\mathrm{R}_{\mathrm{L}}=4 \Omega+15 \mu \mathrm{H}$ Unweighted $R_{L}=4 \Omega+30 \mu \mathrm{H}$ A-weighted $R_{L}=4 \Omega+30 \mu H$ Unweighted $R_{L}=8 \Omega+30 \mu \mathrm{H}$ A-weighted $R_{L}=8 \Omega+30 \mu \mathrm{H}$ Unweighted $R_{L}=4 \Omega+$ Filter A-weighted $R_{L}=4 \Omega+$ Filter Unweighted $R_{L}=4 \Omega+$ Filter A-weighted $R_{L}=4 \Omega+$ Filter		85 60 86 62 76 56 82 60 67 53 -8 57 74 54		$\mu v^{\prime} з м s$

1. Standby mode is active when $\mathrm{V}_{\text {STBY }}$ is tied to GND.

2.2 Analog switch section

Table 12. DC specifications

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Test conditions	Value					Unit
				$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	
V_{IH}	High level input voltage	2.5		1.2			1.2		V
		2.7-3.0		1.3			1.3		
		3.3-3.6		1.4			1.4		
		4.3		1.5			1.5		
$\mathrm{V}_{\text {IL }}$	Low level input voltage	2.5				0.25		0.25	V
		$2.7-3.0$				0.25		0.25	
		3.3-3.6				0.30		0.30	
		4.3				0.40		0.40	
$R_{\text {PEAK }}$, Tn	Switch $T_{n} O N$ resistance	4.3	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{aligned}$	K	1.10	1.3		1.5	Ω
		3.6			1.15	1.4		1.6	
		3.0			1.25	1.5		1.8	
		2.7			1.35	1.6		1.9	
$\Delta \mathrm{R}_{\mathrm{ON}}$, Tn	ON resistance match between Tn channels ${ }^{(1)}$	4.3	V_{S} at R REAK$I_{S}=100 \mathrm{~mA}$		10				$\mathrm{m} \Omega$
		3.6			14				
		3.2			14				
		2.7			15				
$\begin{gathered} \mathrm{R}_{\mathrm{FLAT}}, \\ \mathrm{Tn} \end{gathered}$	ON resistar, ?e flatness for ${ }^{\top} n$ ciliannels ${ }^{(2)}$	4.3	$\begin{aligned} & V_{S}=0 \text { to } V_{C C} \\ & I_{S}=100 \mathrm{~mA} \end{aligned}$		0.45	0.50		0.55	Ω
		3.6			0.45	0.50		0.55	
		3.0			0.50	0.55		0.60	
		2.7			0.55	0.60		0.70	
'oir	OFF state leakage current (Tn), (Dn)	4.3	$\mathrm{V}_{\mathrm{S}}=0.3$ or 4 V			± 0.1		± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SEL }}$	SEL leakage current	0-4.3	$\mathrm{V}_{\text {SEL }}=0$ to 4.3 V			± 0.05		± 1	$\mu \mathrm{A}$
$I_{C C}$	Quiescent supply current	$2.4-4.3$	$\mathrm{V}_{\text {SEL }}=\mathrm{V}_{\text {CC }}$ or GND			± 0.05		± 0.2	$\mu \mathrm{A}$
ICCLV	Quiescent supply current low voltage driving	4.3	$\mathrm{V}_{\text {SEL }}=1.65 \mathrm{~V}$		± 37	± 50		± 100	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {SEL }}=1.80 \mathrm{~V}$		± 33	± 40		± 50	
			$\mathrm{V}_{\text {SEL }}=2.60 \mathrm{~V}$		± 12	± 20		± 30	

1. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\max)}-\mathrm{R}_{\mathrm{ON}(\min)}$.
2. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

Table 13. AC electrical characteristics $\left(C_{L}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}\right)$

Symbol	Parameter	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	Test conditions	Value					Unit
				$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	
$\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$	Propagation delay	$2.5-2.7$			0.45				ns
		3.0-3.3			0.30				
		$3.6-4.3$			0.30				
${ }^{\text {toN }}$	Turn-ON time	$2.5-2.7$	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$		65	85		90	ns
		3.0-3.3			42	55		65	
		3.6-4.3			40	55		65	
$t_{\text {OFF }}$	Turn-OFF time	$2.5-2.7$	$\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$		18	30		$4{ }^{-}$	ns
		3.0-3.3			16	30		40	
		$3.6-4.3$			15	36		40	
Q	Charge injection	$2.5-2.7$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{GEN}}=0 \Omega \end{aligned}$		51	1			pC
		3.0-3.3			51				
		$3.6-4.3$			49				

Table 14. Analog switch characteristics $\left(C_{L}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Test conditions	Value					Unit
				$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
				Min	Typ	Max	Min	Max	
$\mathrm{OIRR}_{\text {Tn }}$	Off isolation for switch T1,T2	$2.5-4.3$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{rms}}, \\ & \mathrm{~F}=1 \mathrm{MHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \hline \end{aligned}$		-80				B
			$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{rms}}, \\ & \mathrm{~F}=10 \mathrm{MHz}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$		-60				
XtalkTn	Crosstalk between T1 and T2	$2.5-4.3$	$\begin{aligned} & V_{S}=1 V_{r m s}, \\ & F=1 M H z \end{aligned}$		-85				
			$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{rms}}, \\ & \mathrm{~F}=10 \mathrm{MHz} \end{aligned}$		-74				
$\mathrm{BW}_{\text {Tn }}$	-3 dB bandwidth for switch T1, T2	2.5-4.3	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \text { Signal }=0 \mathrm{dBm} \end{aligned}$		58				MHz
$\mathrm{C}_{\text {SEL }}$	Control pin input capacitance		$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		9				pF
$\mathrm{C}_{\text {ON,Tn }}$	Tn port capacitance when the switch is enabled	3.3	$\mathrm{F}=1 \mathrm{MF} \cdot \mathrm{~L}$		113				pF
$\mathrm{C}_{\text {OFF,Tn }}$	Tn port capacitance when the switch is disabled	3.3	$\mathrm{F}:=1 \mathrm{MHz}$		85				pF

3 Electrical characteristics curves

3.1 Audio amplifier section

The graphs included in this section use the following abbreviations:

- $\mathrm{R}_{\mathrm{L}}+15 \mu \mathrm{H}$ or $30 \mu \mathrm{H}=$ pure resistor + very low series resistance inductor.
- Filter $=$ LC output filter $(1 \mu \mathrm{~F}+30 \mu \mathrm{H}$ for 4Ω and $0.5 \mu \mathrm{~F}+60 \mu \mathrm{H}$ for $8 \Omega)$.
- All measurements done with $\mathrm{C}_{\mathrm{s} 1}=1 \mu \mathrm{~F}$ and $\mathrm{C}_{\mathrm{s} 2}=100 \mathrm{nF}$ except for PSRR where $\mathrm{C}_{\mathrm{s} 1}$ is removed.

Figure 1. Test diagram for audio amplifier measurements

Figure ? Test diagram for audio amplifier PSRR measurements

Figure 3. Current consumption vs. power supply voltage

Figure 4. Current consumption vs. standby voltage

Figure 5. Output offset voltage vs. common Figure 6. Efficienr; vs. Ditput power mode input voltage

Figure \therefore Eificiency vs. output power
Figure 8. Output power vs. power supply voltage

Figure 9. Output power vs. power supply voltage

Figure 10. PSSR vs. frequency

Figure 11. PSSR vs. frequency

Figure 12. PSSR ve. frequency

Figure 13. כ:SK vs. frequency

Figure 14. PSSR vs. frequency

Figure 15. PSSR vs. frequency
Figure 16. PSSR vs. common mode input voltage

Figure 17. CMRR vs. common mode input voltage

Figure 18. CMRR ve. fiec!ency

Figure : 9
CillRR vs. frequency

Figure 20. CMRR vs. frequency

Figure 21. CMRR vs. frequency

Figure 22. CMRR vs. frequency

Figure 23. CMRR vs. frequency

Figure 24. THD+N vs. ounn it vower

Figure 25. THD+N vs. output power

Figure 26. THD+N vs. output power

Figure 27. THD+N vs. output power

Figure 29. THD+N vs. output power

Figure 28. THD+N vs. output power

Figure 30. THD+N vs. oun it sower

Figure 31. THD $+\mathbf{N}$ vs. output power

Figure 32. THD+N vs. frequency

Figure 33. THD+N vs. frequency

Figure 34. THD+N vs. frequency

Figure 35. THD+N vs. frequency

Figure 36. THD+N vs. frež en =y

Figure 37. THD+N vs. frequency

Figure 38. THD+N vs. frequency

Figure 39. THD+N vs. frequency

Figure 40. Gain vs. frequency

Figure 41. Gain vs. frequency

Figure 42. Gain vs. frequar.cy

Figure 43. Gain v:. frequency

Figure 44. Gain vs. frequency

Figure 45. Gain vs. frequency

Figure 46. Gain vs. frequency

 $\mathrm{G}=6 \mathrm{~dB}, \mathrm{C}_{\mathrm{in}}=1 \mu \mathrm{~F}(5 \mathrm{~ms} / \mathrm{div})$
 $\mathrm{G}=6 \mathrm{dP}, \mathrm{C}_{1} \cdot-100 \mathrm{nF}(5 \mathrm{~ms} / \mathrm{div})$

Figure 49. Sar up \& shutdown time $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$,
$G=6 \mathrm{~dB}$, no $C_{\text {in }}(5 \mathrm{~ms} / \mathrm{div})$

3.2 Analog switch section

The graphs included in this section use the following abbreviations.

- $R_{L}+15 \mu \mathrm{H}$ or $30 \mu \mathrm{H}=$ pure resistor + very low series resistance inductor.
- Filter $=$ LC output filter $(1 \mu \mathrm{~F}+30 \mu \mathrm{H}$ for 4Ω and $0.5 \mu \mathrm{~F}+60 \mu \mathrm{H}$ for $8 \Omega)$.
- All measurements done with $\mathrm{C}_{\mathrm{s} 1}=1 \mu \mathrm{~F}$ and $\mathrm{C}_{\mathrm{s} 2}=100 \mathrm{nF}$ except for PSRR where $\mathrm{C}_{\mathrm{s} 1}$ is removed.

Figure 50. Test diagram for switch measurements

Figure 51. Te it slagram for isolation switch measurements

Figure 52. ON resistance

Figure 53. OFF leaka ϵ

Figure 54. OFF isolation

Figure 55. Bandwidth

Figure 56. Switch-to-switch crosstalk

Firgcre 27 . Test circuit

Note: $1 \quad C_{L}=5 / 35 p F$ or equivalent (includes jig and probe capacitance).
$2 R_{L}=50 \Omega$ or equivalent.
$3 \quad R_{T}=Z_{O U T}$ of pulse generator (typically 50Ω).

Figure 58. Switching time and charge injection Figure 59. Switching time and charge injection test circuit schematics

Figure 60. Turn on, turn off time test circuit
Figure 61. Turn on Sirn of time schematics

Figure © Ti1D+N vs. output power

Figure 63. THD+N vs. output power

Figure 64. THD+N vs. output power

Figure 65. THD+N vs. output power

Figure 66. THD+N vs. output power

Figure 67. THD+N vs. oun it vower

Figure 68. THD +N vs. frequency

Figure 69. THD+N vs. frequency

Figure 70. THD+N vs. frequency

Figure 71. THD+N vs. frequency

Figure 72. THD+N vs. frequency

Figure 73. THD+N vs. frezten $=y$

Figure 74. Isolaticn vs. frequency

4 Application component information

Table 15. Component information

Component	Functional description
$\mathrm{C}_{\text {SA }}$	Bypass supply capacitor. Install as close as possible to the VCCA pin of the TS4961T to minimize high-frequency ripple. A 1 uF ceramic capacitor should be added to enhance power supply filtering at high frequencies (see below).
$\mathrm{C}_{\text {SS }}$	Bypass supply capacitor. Install as close as possible to the VCCS pin of the TS4961T to minimize high-frequency ripple. A 100 nF ceramic capacitor should be added to enhance power supply filtering at high frequencies.
$\mathrm{R}_{\text {IN }}$	Input resistor to program the TS4961T differential gain (gain $=300 \mathrm{k} \Omega / \mathrm{R}_{\text {IN }}$ with $R_{I N}$ in $k \Omega$).
$\mathrm{C}_{\text {IN }}$	Because common mode feedback is implemented, these input cane citors are optional. However, they can be added to form with $\mathrm{R}_{\text {IN }}$ a 1 si , N_{N} er high pass filter with a -3 dB cut-off frequency $=1 /\left(2^{\star} \pi^{*} \mathrm{R}_{\mathrm{IN}}{ }^{*} \mathrm{C}_{\mathrm{IN}}\right)$.

Figure 75. Typical application schematics

4.1 Common mode feedback loop limitations

The common mode feedback loop allows the output DC bias voltage to be averaged at $\mathrm{V}_{\mathrm{CC}} / 2$ for any DC common mode bias input voltage.

However, because of the $\mathrm{V}_{\mathrm{icm}}$ limitation in the input stage (see Table 2: Operating conditions for audio amplifier section on page 3), the common mode feedback loop can only fulfill its role within a defined range. This range depends upon the values of $V_{C C}$ and $R_{\text {in }}(A v)$. To obtain a good estimation of the $\mathrm{V}_{\mathrm{icm}}$ value, the following formula can be used (no tolerance on $\mathrm{R}_{\text {in }}$):

$$
\begin{equation*}
\mathrm{V}_{\mathrm{icm}}=\frac{\mathrm{V}_{\mathrm{CC}} \times \mathrm{R}_{\mathrm{in}}+2 \times \mathrm{V}_{\mathrm{IC}} \times 150 \mathrm{k} \Omega}{2 \times\left(\mathrm{R}_{\mathrm{in}}+150 \mathrm{k} \Omega\right)} \tag{V}
\end{equation*}
$$

with

$$
\begin{equation*}
V_{I C}=\frac{\ln ^{+}+\operatorname{In}^{-}}{2} \tag{V}
\end{equation*}
$$

and the result of the calculation must be in the range:

$$
0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{icm}} \leq \mathrm{V}_{\mathrm{C}}-1.8 \mathrm{~V}
$$

Due to the $+/-9 \%$ tolerance on the $150 \mathrm{k} \Omega$ resistor 1.に also important to check $\mathrm{V}_{\mathrm{icm}}$ in these conditions:

$$
\frac{\mathrm{V}_{\mathrm{CC}} \times \mathrm{R}_{\mathrm{in}}+2 \times \mathrm{V}_{\mathrm{IC}} \times 153.5 \kappa \Omega}{2 \times\left(\mathrm{R}_{\mathrm{in}}+136.5 \mathrm{nsL}\right)} \leq \mathrm{V}_{\mathrm{icm}} \leq \frac{\mathrm{V}_{\mathrm{CC}} \times \mathrm{R}_{\mathrm{in}}+2 \times \mathrm{V}_{\mathrm{IC}} \times 163.5 \mathrm{k} \Omega}{2 \times\left(\mathrm{R}_{\mathrm{in}}+163.5 \mathrm{k} \Omega\right)}
$$

If the result of the $\mathrm{V}_{\mathrm{icm}}$ carcuidion is not in the previous range, input coupling capacitors must be used (with $\mathrm{V}_{\text {(; }}$ 1:0in 2.4 V to 2.5 V , input coupling capacitors are mandatory).

For example:

With $\bigvee^{\prime} c r=3{ }^{\circ}, R_{\text {in }}=150 \mathrm{k} \Omega$ and $\mathrm{V}_{\mathrm{IC}}=2.5 \mathrm{~V}$, we typically find $\mathrm{V}_{\mathrm{icm}}=2 \mathrm{~V}$ and this is lower than $3 \mathrm{r}^{\prime}-0.8 \mathrm{~V}=2.2 \mathrm{~V}$. With $136.5 \mathrm{k} \Omega$ we find 1.97 V , and with $163.5 \mathrm{k} \Omega$ we have 2.02 V . Tr sinfore, no input coupling capacitors are required.

4.2 Low frequency response

If a low frequency bandwidth limitation is required, it is possible to use input coupling capacitors.
In the low frequency region, $\mathrm{C}_{\text {in }}$ (input coupling capacitor) starts to have an effect. $\mathrm{C}_{\text {in }}$ forms, with $R_{\text {in }}$, a first order high-pass filter with a -3 dB cut-off frequency:

$$
\begin{equation*}
F_{C L}=\frac{1}{2 \pi \times R_{\text {in }} \times C_{\text {in }}} \tag{Hz}
\end{equation*}
$$

Therefore, for a desired cut-off frequency $\mathrm{F}_{\mathrm{CL}}, \mathrm{C}_{\text {in }}$ is calculated as follows:

$$
\begin{equation*}
C_{i n}=\frac{1}{2 \pi \times R_{i n} \times F_{C L}} \tag{F}
\end{equation*}
$$

with $\mathrm{R}_{\text {in }}$ in Ω and F_{CL} in Hz .

4.3 Decoupling of the circuit

A power supply capacitor, referred to as C_{S}, is necessary \pm n ccrectly bypass the class D part of the TS4961T.

The TS4961T has a typical switching frequency at $\iota^{\imath} \downarrow こ \mathrm{kHz}$ and an output fall and rise time at approximately 5 ns . Because of these ver) tast :ransients, careful decoupling is mandatory.
A $1 \mu \mathrm{~F}$ ceramic capacitor is enough, but it must be located very close to the TS4961T in order to avoid any extra parasitic inductance created by a long track wire. In relation with $\mathrm{dl} / \mathrm{dt}$, this parasitic inducté $\mathrm{n} \odot{ }^{\circ}$ in roduces an overvoltage that decreases the global efficiency and, if it is ton hish, may cause a breakdown of the device.
In addition, even if a ceramic capacitor has an adequate high frequency ESR value, its current capab:li, y is also important. A 0603 size is a good compromise, particularly when a 4Ω loaí 's uiod.

Annther important parameter is the rated voltage of the capacitor. A $1 \mu \mathrm{~F} / 6.3 \mathrm{~V}$ capacitor is.d at 5 V , loses about 50% of its value. In fact, with a 5 V power supply voltage, the recoupling value is about $0.5 \mu \mathrm{~F}$ instead of $1 \mu \mathrm{~F}$. Since C_{S} has a particular influence on the THD $+N$ in the medium-high frequency region, this capacitor variation becomes decisive. In addition, less decoupling means higher overshoots, which can be problematic if they reach the power supply AMR value (6 V).

4.4 Wake-up time (t_{wu})

There is a wait of approximately 5 ms when standby is released to set the device ON. The TS4961T has an internal digital delay that mutes the outputs and releases them after this time in order to avoid any pop noise.

4.5 Shutdown time ($\mathbf{t}_{\text {StBy }}$)

When the standby command is set, the time required to put the two output stages into high impedance and to put the internal circuitry in standby mode, is about 5 ms . This time is used to decrease the gain and avoid any pop noise during shutdown.

4.6 Consumption in standby mode

Between the shutdown pin and GND there is an internal $300 \mathrm{k} \Omega$ resistor. This resistor forces the TS4961T to switch to standby mode when the standby input is left floating.

However, this resistor also introduces additional power consumption if the standby pin voltage is not 0 V .

4.7 Single-ended input configuration

 capacitors are necessary. Figure 76 shows a typical single-e idf a invut application.

Figure 76. Typical single-ended input application

All formulas are identical except for the gain (with $\mathrm{R}_{\text {in }}$ in $\mathrm{k} \Omega$):

$$
\mathrm{A}_{\mathrm{V}_{\text {single }}}=\frac{\mathrm{V}_{\mathrm{e}}}{\mathrm{Out}^{+}-\mathrm{Out}^{-}}=\frac{300}{\mathrm{R}_{\text {in }}}
$$

Due to the internal resistor tolerance, $A_{\text {Vsingle }}$ is in the range of:

$$
\frac{273}{R_{\text {in }}} \leq A_{V_{\text {single }}} \leq \frac{327}{R_{\text {in }}}
$$

In the event that multiple single-ended inputs are summed, it is important that the impedance on both TS4961 inputs (In^{-}and In^{+}) be equal.

Figure 77. Typical application schematics with multiple single-ended inputs

We have the following equations.

$$
\begin{align*}
\text { Out }^{+}-\text {Out }^{-} & =V_{e 1} \times \frac{300}{R_{i n 1}}++V_{e k} \\
C_{\mathrm{eq}} & =\sum_{\mathrm{j}=1}^{K} \mathrm{C}_{\mathrm{inj}} \tag{F}\\
C_{\mathrm{inj}} & =\frac{1}{2 \times \pi \times R_{\mathrm{inj}} \times F_{C L j}} \\
R_{\mathrm{eq}} & =\frac{1}{\sum_{\mathrm{j}=1}^{k} \frac{1}{R_{\mathrm{inj}}}}
\end{align*}
$$

In general, for mixed situations (single-ended and differential inputs), the same rule must be used, that is, to equalize impedance on both TS4961T inputs.

4.8 Output filter considerations

The TS4961T is designed to operate without an output filter. However, due to very sharp transients on the TS4961T output, EMI radiated emissions may cause some standard compliance issues.

These EMI standard compliance issues can appear if the distance between the TS4961T outputs and loudspeaker terminal are long (typically more than 50 mm , or 100 mm in both directions, to the speaker terminals). Since the PCB layout and internal equipment device are different for each configuration, it is difficult to provide a one-size-fits-all solution.

However, to decrease the probability of EMI issues, there are several simple rules to follow.

- Reduce, as much as possible, the distance between the TS4961T output pins and the speaker terminals.
- Use ground planes for shielding sensitive wires.
- Place, as close as possible to the TS4961T and in series with each outr,ut, \exists ?rrite bead with a rated current of 2.5 A minimum, and impedance great?r thai: $\mathcal{\prime} 0 \Omega$ at frequencies above 30 MHz . If, after testing, these ferrite beads ar $\geqslant \mathrm{r}$ คi necessary, replace them by a short circuit.
- Allow enough footprint to place, if necessary, a capacitor 'o short perturbations to ground as shown in Figure 78.

Figure 78. Output filter for shorting pertubatinis io ground

In the case where $+\boldsymbol{r}$ distance between the TS4961T outputs and speaker terminals is high, it is possible to have low frequency EMI issues due to the fact that the typical operating freque 7 」 に 250 kHz .

In tr.1s configuration, it is recommended to use an output filter. It should be placed as close a: possible to the TS4961T.

4.9 Examples with summed inputs

4.9.1 Example 1: dual differential inputs

Figure 79. Typical application schematics with dual differential inputs

With ($R i$ in $k \Omega$):

$$
\begin{gathered}
A_{V_{1}}=\frac{\text { Out }^{+}-\text {Out }^{-}}{E_{1}^{+}-E_{1}^{-}}=\frac{300}{R_{1}} \\
A_{V_{2}}=\frac{\text { Out }^{+}-\text {Out }^{-}}{E_{2}^{+}-E_{2}^{-}}=\frac{300}{R_{2}} \\
0.5 \mathrm{~V} \leq \frac{V_{C C} \times R_{1} \times R_{2}+300 \times\left(V_{I C 1} \times R_{2}+V_{I C 2} \times R_{1}\right)}{300 \times\left(R_{1}+R_{2}\right)+2 \times R_{1} \times R_{2}} \leq V_{C C}-0.8 V \\
V_{\mathrm{IC}_{1}}=\frac{E_{1}^{+}+E_{1}^{-}}{2} \text { and } V_{\mathrm{IC}_{2}}=\frac{E_{2}^{+}+E_{2}^{-}}{2}
\end{gathered}
$$

4.9.2 Example 2: one differential input plus one single-ended input

Figure 80. Typical application schematics with one differential input plus one single-ended input

With (Ri in k Ω):

$$
\begin{align*}
& \mathrm{A}_{\mathrm{V}_{1}}=\frac{\text { Out }^{+}-\text {Out }^{+}}{\mathrm{E}_{1}^{+}}=\frac{300}{\mathrm{R}_{1}} \\
& \mathrm{~A}_{\mathrm{V}_{2}}=\frac{\text { Out }^{+}-\text {Out }^{-}}{\mathrm{E}_{2}{ }^{+}-\mathrm{E}_{2}^{-}}=\frac{300}{\mathrm{R}_{2}} \\
& \mathrm{C}_{1}=\frac{1}{2 \pi \times \mathrm{R}_{1} \times \mathrm{F}_{\mathrm{CL}}} \tag{F}
\end{align*}
$$

4.10 Using the audio amplifier and switch on the same speaker

The TS4961T can be used to supply a speaker with two different sources. The typical application is shown in Figure 81.

Figure 81. Typical application schematics for the TS4961T

The first source is a line-o ut sitjnal provided by the baseband and the second is a speaker-out signal cor, irig irom the CODEC. Switching is done through the standby pin

Note that, as s'רی. in Figure 82, all pins should not be switched at the same time because this cenl a ise damage to the TS4961T audio amplifier and to the external audio amplifier that prc ides the speaker-out signal.

Figure 82. Timing of switching between two audio sources

5 Package information

In order to meet environmental requirements, ST offers these devices in ECOPACK ${ }^{\circledR}$ packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Figure 83. QFN16 $3 \times 3 \mathrm{~mm}$ package mechanical drawing

Note: \quad For enhanced thermal performance the ϵ.oc sed pad must be soldered to a copper area on the PCB, acting as a heatsink. This c Tpper area can be electrically connected to pins 7 and 10 or left floating.

Table 16. QFN16 3×3 n.in package mechanical data

Ref.	Millimeters							Inches
	Min.	Typ.	Max.	Min.	Typ.	Max.		
	0.80	0.90	1.00	0.031	0.035	0.039		
A1		0.02	0.05		0.001	0.002		
A3		0.20			0.008			
b	0.18	0.25	0.30	0.007	0.01	0.012		
D	2.85	3.00	3.15	0.112	0.118	0.124		
D1		1.50			0.059			
D2	1.70	1.80	1.90	0.067	0.071	0.075		
E	2.85	3.00	3.15	0.112	0.118	0.124		
E1		1.50			0.059			
E2	1.70	1.80	1.90	0.067	0.071	0.075		
e	0.45	0.50	0.55	0.018	0.020	0.022		
L	0.30	0.40	0.50	0.012	0.016	0.020		
ddd			0.08			0.003		

Figure 84. QFN16 $3 \times 3 \mathrm{~mm}$ package recommended footprint

6 Ordering information

Table 17. Order codes

Order code	Temperature range	Package	Packing	Marking
TS4961TIQT	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	QFN16	Tape \& reel	K61T

7 Revision history

Table 18. Document revision history

Date	Revision	Changes
16-Sep-2008	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its suinsidia. ' ϵ : , ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and ser icts described herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and ices described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services τ_{ϵ} icr sed herein.
No license, express or implied, by estoppel or otherwise, to any intellectual propertv ix is s granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a cel se grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a \because a ranty covering the use in any manner whatsoever of such third party products or services or any intellectual property containe i it al ?in.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE ANL,UR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FCD A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMER/I O - AVY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN' V'RITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OF W/ RRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRCD JC 'S OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PF OP $\mathrm{Eh}^{\top} Y$ UR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE L'SED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of $S^{-}+$oc ucts with provisions different from the statements and/or technical features set forth in this document shall immediately void any war an, / yranted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

